
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel Ângelo Gomes da Costa

Software Quality for the
Robot Operating System

October 2015

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Miguel Ângelo Gomes da Costa

Software Quality for the
Robot Operating System

Master dissertation
Master Degree in Computing Engineering

Dissertation supervised by
Prof. Manuel Alcino Pereira da Cunha
Nuno Filipe Moreira Macedo

October 2015

Acknowledgements

Primeiramente, gostaria de expressar a minha sincera gratidão aos meus supervisores, Professor
Alcino Cunha e Nuno Macedo, pelo seu constante apoio e pesquisa relacionada com o pro-
jeto, pela sua disponibilidade, paciência e motivação dada. A sua orientação foi essencial e
indispensável na realização da aplicação para este projeto, assim como no desenvolvimento do
presente relatório.

Pretendo também agradecer aos meus colegas e membros do HASLab, embora o tempo e con-
vivência não tenha sido muito, para mim foi o suficiente para conhecer novas pessoas, aprender,
trabalhar, relaxar e debater sobre uma diversa variedade de temas.

Por último, mas não menos importante, gostaria de agradecer aos meus pais, irmão e a Natália
Costa pela constante presença, motivação e apoio dado, mesmo percebendo pouco do assunto.

Abstract

The huge development in the fields of robotics spurred a greater interaction between human
beings and robots. It is common knowledge that the malfunctioning of robots may cause not
only material damage, but also physical damages to its users. Hence, it is necessary to ensure
that robots have proper operation, and one way to ensure this is through the use of high quality
software.

In software engineering context there is the ability to assess the quality of the developed soft-
ware. This quality will differ depending on whether the code meets all the requirements and
specifications proposed by a certain quality model. The code quality can be measured through
the study of internal quality components, more particularly the Maintainability.

The methods used for measuring the code quality are complex and can include compliance
with standards of different quality models, such as ISO 90001.

This research project has as main objective the assessment of the code quality of several robots,
developed from ROS (Robot Operating System - Quigley et al. (2009)). The assessment of this
kind of information, about the code quality, is achieved through the use of static analysis tools.
These tools, in turn, are responsible for conducting an analysis to source code, measuring its
internal quality metrics without having to execute it.

Keywords: Robot Operating System, Software Engineering, Software Quality, Code Quality,
Internal and External Quality Metrics, Maintainability.

1http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm

a

http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm

Resumo

O grande desenvolvimento na área da robótica impulsionou uma maior interação entre Seres
Humanos e robôs. É de conhecimento geral que o mau funcionamento dos robôs pode causar não
só danos materiais como também danos fı́sicos aos seus utilizadores. Desta forma, é necessário
assegurar que os robôs tenham um funcionamento correto, e uma das formas de o garantir é
através da utilização de software de alta qualidade.

Num contexto de engenharia de software existe a capacidade de avaliar a qualidade do software
desenvolvido. Esta qualidade vai variar dependendo se o código atinge todos os requisitos e
especificações propostos por um determinado modelo de qualidade. A qualidade do código pode
ser medida através do estudo das componentes de qualidade interna, mais particularmente a
Maintainability.

Os métodos utilizados para aferir a qualidade de código são complexos e podem incluir o
cumprimento de normas de diferentes modelos de qualidade, tal como o ISO 90002.

Este trabalho de investigação tem como principal objetivo a aferição da qualidade de código de
varios robôs, desenvolvidos a partir do ROS (Robot Operating System - Quigley et al. (2009)).
A aferição deste tipo de informação, sobre a qualidade do código, é obtida através do uso de
ferramentas de analise estática. Estas ferramentas, por sua vez, são então responsávies por re-
alizar uma análise ao código, medindo as suas métricas de qualidade interna sem nunca o ter de
executar.

Palavras-chave: Robot Operating System, Engenharia de Software, Qualidade de Software,
Qualidade de código, Métricas de qualidade interna e externa, Maintainability.

2http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm

b

http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm

Contents

Contents iii

1. Introduction 3
1.1. Main Goals . 5

2. State of the Art 7
2.1. Code Quality . 7

2.1.1. What is Maintainability? . 10
2.1.2. Metrics . 12
2.1.3. Quality Models . 20

2.2. Robot Operating System . 23
2.3. Static Analysis Tools . 25

3. Contribution 30
3.1. ROS Static Analysis Tool Architecture . 31

3.1.1. Startup Phase . 31
3.1.2. Execution Phase . 34
3.1.3. Creating Plugins to the Main Tool . 34

3.2. Rule Violation Finder . 35
3.2.1. Rule Violation Finder Architecture . 37
3.2.2. Visualizing the Violated Rules . 39

3.3. Data Analysis . 40
3.3.1. Analysis of Kobuki . 40
3.3.2. Analysis of Turtlebot . 43
3.3.3. Analysis of Other Robots . 44

4. Conclusion 47
4.1. Future Work . 49

iii

Contents

A. Internal Quality Metrics 55
A.1. Quality Models . 55

A.1.1. NASA SATC . 55
A.1.2. ROS . 56
A.1.3. KTH . 56
A.1.4. HIS . 57
A.1.5. UNAK . 57
A.1.6. SIG . 58

A.2. NPath Expressions . 58

B. Declared Rules 59

C. Tool Reports 65
C.1. CCCC Tool Report . 65
C.2. OClint Tool Report . 66

D. Data Analysis 69
D.1. Turtlebot Package Analysis . 69
D.2. Kobuki Package Analysis . 70
D.3. Abb Package Analysis . 71
D.4. Grizzly Package Analysis . 71
D.5. Husky Package Analysis . 72
D.6. Motoman Package Analysis . 72
D.7. Nao Package Analysis . 73
D.8. Universal Package Analysis . 73
D.9. Shadow Package Analysis . 74
D.10.Pr2 Package Analysis . 75
D.11.Cob Package Analysis . 77

iv

List of Figures

2.1. The external and internal characteristics - ISO 9126-1 (ISO/IEC, 2001). 9
2.2. Software quality - life cycle - ISO 9126 (Bevan and Azuma, 1997; ISO/IEC,

2001). 10
2.3. Internal quality - Highlighted maintainability characteristic (ISO/IEC, 2001). . . 11
2.4. Maintainability sub-characteristics and the source code properties proposed by

ISO/IEC (2001). 13
2.5. Control flow graph of the function defined in Listing 2.2. 16
2.6. Simplified diagram with the behavior of a ROS system (Santos, 2015). 25

3.1. Preview of the Kobuki’s packages and their dependencies. 41
3.2. Side bar with the information of the selected package, yocs waypoints navi (blue

box). 42
3.3. Rule violations pop-up with one active filter tag, ros. 42
3.4. Preview of the Turtlebot’s packages and their dependencies. 43

v

List of Tables

2.1. Set of metrics used on ROS threshold (Kuehn, 2013). 14
2.2. Pros and cons of commercial and open source tools (Vonnegut, 2015). 26

3.1. Metrics obtained by each plugin. 36
3.2. Number of lines of code, rules violated in total and per quality model for a set of

Kobuki’s packages. 43
3.3. Number of lines of code, rules violated in total and per quality model for a set of

Turtlebot’s packages. 44
3.4. Number of lines of code, packages, rule violations and the percentage of viola-

tions per line of code for all the other analysed robots. 45
3.5. Number and percentage of each violated rule. 46

A.1. NASA SATC File-metrics . 55
A.2. NASA SATC Function-metrics . 55
A.3. NASA SATC Class-metrics . 55
A.4. ROS File-metrics . 56
A.5. ROS Function-metrics . 56
A.6. ROS Class-metrics . 56
A.7. KTH Function-metrics . 56
A.8. HIS File-metrics . 57
A.9. HIS Function-metrics . 57
A.10.University of Akureyri in Iceland File-metrics 57
A.11.University of Akureyri in Iceland Class-metrics 57
A.12.SIG’s metric values (1 of 2) . 58
A.13.SIG’s metric values (2 of 2) . 58
A.14.NPath Expressions - (Nejmeh, 1988) . 58

D.1. Number of rule violations found on Turtlebot’s packages. 69

vi

List of Tables

D.2. Number of rule violations found on Kobuki’s packages. 70
D.3. Number of rule violations found on Abb’s packages. 71
D.4. Number of rule violations found on Grizzly’s packages. 71
D.5. Number of rule violations found on Husky’s packages. 72
D.6. Number of rule violations found on Motoman’s packages. 72
D.7. Number of rule violations found on Nao’s packages. 73
D.8. Number of rule violations found on Universal’s packages. 73
D.9. Number of rule violations found on Shadow’s packages. 74
D.10.Number of rule violations found on Pr2’s packages. 76
D.11.Number of rule violations found on Cob’s packages. 78

vii

List of Listings

2.1. A simple program written in C. 14
2.2. Cyclomatic complexity of FUNCTION 1. 16
2.3. Number of Executable Lines of MAIN. 16
2.4. Number of Function Calls of FUNCTION 2. 17
2.5. Maximum Nesting Control of FUNCTION 3. 18
2.6. Maximum Nesting Control of FUNCTION 4. 18
2.7. Static Path Count of FUNCTION 5. 18

3.1. Example of a configuration file, named config.yaml. 31
3.2. Example of a set of rules defined in the rules file, named rules.yaml. 32
3.3. Example of a filter file, named filter.yaml. 33
3.4. An usage example of the GETFILEINFO function, extracted from a made up

script named cccc rules . 37
3.5. An usage example of the WRITENONCOMPLIANCE function, extracted from a

made up script named cccc rules. 37
3.6. Execution of the MNC Metric script. 39

B.1. Rule declarations for the quality models. 59

C.1. Example of a XML report extracted from CCCC. 65
C.2. Example of a XML report extracted from OClint. 66

viii

Acronyms

CBO Coupling Between Objects. 14, 19, 20, 36, 39

CC Cyclomatic Complexity. 14, 15, 18, 19, 23, 29, 36, 39, 58

COM Lines of Comment. 14, 23

COMR Comment Code Ratio. 14, 15, 36, 39

DIT Deepest Level in Inheritance. 14, 20, 36, 39

ESPC Estimated Static Path Count. 14, 18, 36

GCC GNU Compiler Collection. 36

HV Halstead Volume. 23

LOC Lines of Code. 14, 23, 58

MI Maintainability Index. 12, 23, 29

MNC Maximum Nesting Control. 14, 17, 18, 36, 38, 39

NEL Number of Executable Lines. 14, 16, 36

NFC Number of Function Calls. 14, 17, 36

NOC Number of Immediate Children. 14, 20, 36, 39

NOM Number of Methods Available. 14, 19, 20, 36, 39

WMC Weighted Methods per Class. 14, 20, 36, 39

ix

1. Introduction

In the 20th century there was a great development of robots in all sectors, particularly in the
industrial sector. Throughout the remainder century robots changed the structure of society and
allowed better working conditions. In addition, the implementation of advanced robotics in the
military sector and NASA modified the panorama of national defense and space exploration.

Software is becoming increasingly important when it comes to controlling the robots, rather
than relying solely on hardware. Using software to control robots promotes flexibility, interaction
and abstraction, but its use also has negative aspects because the software is much more difficult
to control and maintain, in comparison to hardware.

Given this difficulty, it is necessary to apply development methods to promote the quality of
the final product. The use of quality models is one of the possible methods to ensure the quality
of the software.

Quality models are constituted by a set of rules and practices that must be satisfied while de-
veloping software. Each quality model may have a different set of rules and they vary depending
on the thresholds and quality metrics used. These quality metrics are measured, independently,
through the use of static analysis tools, and it can be also used to predict failures in the soft-
ware (Danijel Radjenović, 2013). In a software engineering concept, the quality of a software
product is gauged as good when it meets all the rules proposed from a quality model. As pre-
viously mentioned, quality models are used to prevent the existence of low quality software on
robots, promoting in turn their safety. Thus, from this quality models it is possible to obtain
information about the software quality. Quality itself is actually quite difficult to define because
it requires measuring subjective characteristics and there is no way to rate it, so every person will
see it differently, that is why there are many different thresholds for the same programming/cod-
ing language. There are also different quality models, each one created with its own purpose,
in particularly the standard ISO/IEC 9126 (ISO/IEC, 2001) describes a software quality model
that is divided into three quality types, such as external quality, internal quality and quality in
use. This three quality types are composed by six characteristics that are also subdivided into
twenty-seven sub-characteristics (Heitlager et al., 2007).

3

For this research project it was chosen to use techniques to statically analyse source code, so
the main focus is on measuring the internal quality. The internal quality is focused on measuring
the quality of the developed software, through the analysis of its internal attributes. Further-
more, it is known that the internal quality also affects the external quality. To gauge something
about the quality of the source code is necessary to focus on a particular characteristic of the
internal quality, the maintainability. In software engineering, the maintainability is defined by
the simplicity and the ease how changes can be made in a software system (IEEE, 1990). Some
companies have defined a formula called maintainability index which uses internal quality metric
values as variables. This formula may vary from company to company depending on the product
or the aspects that the company is focusing.

Considering the increase in the use of robots, it is necessary to ensure that the use of the same
is safe. Software errors can be one of the reasons to the safety breaches, particularly in highly
complex robots.

The lack of safety is obviously a problem because it can lead to a unsafe operational func-
tioning or harmful behavior of a robot. Despite of all the positive aspects of the robot usage,
their malfunction may lead to many negative events, such as: great economical losses, failure of
a mission and in a worst case scenario it can put people’s lives at risk (Barchanski, 2011). For
instance, the industrial robots are large and in turn also quite powerful, which means they are
capable of make severe injuries to the persons that interact with them if the software used does
not provide the necessary safety.

As indicated by Barchanski (2011), the software of robot control “allows unprecedented com-
plexity which goes beyond the ability of current engineering techniques for assuring acceptable
risk. Most of the publications on safety have a form of recommendations on providing safe envi-
ronment for robot operators, like the Occupational Safety and Health Administration regulations
or the more recent NASA recommendations for space robots. This approach is effective when
accidents are primarily caused by hardware components failures.”The main role of the robot con-
trol software is the interaction of its components (Barchanski, 2011). For instance, if we think of
a robot that simulates the walking of the human being we have the component ”Brain” and com-
ponents ”Legs”, where the ”Brain” has to interact with the ”Legs”, in order to make them move.
Accidents occur mainly in the component interaction rather on the components themselves. For
instance, with the previous example, an accident could happen if the Brain component fail to
send information to the Legs component, which would make the robot to stop. In a industrial
scenario, where the robots are utilized in a production process, if a robot stops working prema-
turely it might neglect the whole production process. With this knowledge, many middlewares, to

4

1.1. Main Goals

robotic systems, were developed with the objective of improving the interaction process between
components.

Although many middleware have been proposed to robotics (Elkady and Sobh, 2012), the
chosen study middleware was the Robot Operating System (ROS - Quigley et al. (2009)). The
reason that led to the choice of ROS and none of the other was due to many aspects, such as:
the big community, the huge number of available packages, a very permissive open license, the
fact that robots with ROS software are already used in industry and many others that can be
find the ROS webpage1. The fact that the packages are all public allows us to explore and study
the static analysis techniques on source code. ROS is an open-source, collection of software
structures for a robot. It provides the expected standard services from an operation system such as
hardware abstraction, implementation of commonly-used functionality, low-level device control,
package management and message-passing between processes. ROS provides libraries and tools
for obtaining, running, writing and building code on multiple computers (Thomas, 2014), and it
also proposes a quality model built from other institution’s quality models (Kuehn, 2013).

1.1. Main Goals

This research project is focused on determining whether the existing quality models fit the robotic
software, in particular ROS, and in the process, study and evaluate the code quality of the ROS
packages. The process previously referred is separated into two distinct stages, in the first stage a
measurement of a number of quality metrics is executed, through the use of static analysis tools,
while in the second stage these measurements are used in order to obtain some information about
the code quality. More specifically, the objectives are:

• Explore the quality models that best fit the ROS system;

• Explore quality metrics and the static analysis tools able to measure them;

• Given the conclusions drawn in the previous assignments, develop a system for calculating
quality models that takes into account the particularities of ROS;

• Measuring the quality of a large number of ROS packages, allowing the validation of the
developed tool and, at the same time, present the quality of the current state of the ROS
corpus.

1http://www.ros.org/is-ros-for-me/

5

http://www.ros.org/is-ros-for-me/
http://www.ros.org/is-ros-for-me/

1.1. Main Goals

Given the identification of the objectives for this research project, Chapter 2 is aimed at pre-
senting the state of the art of this thematic, whereas Chapter 3 presents the contribution of this
research project, which includes a developed system for calculating quality models and a study
conducted on several ROS packages, and finally, the Chapter 4 is intended for the conclusions
drawn from the study realized in Chapter 3.

6

2. State of the Art

Code quality is something unavoidable if we want to study the quality of the software. A way
to gauge this quality is through the use of automated tools (independent of human interaction)
that are responsible for conducting a static analysis of the source code without even executing it.
Right after completing the code static analysis it is then necessary to choose the quality model
that is intended to use, in order to verify if the developed software have a good or bad quality. The
quality is assigned in accordance with the selected quality model. For instance, the code quality
is considered good when the values of the quality metrics are within the values proposed by each
quality model. On other hand, the existence of violated rules, i.e. values of quality metrics that
are outside of the proposed threshold values, influences the reduction of code quality.

This chapter is dedicated to some of the research and knowledge acquired about quality met-
rics, code quality, quality models, maintainability characteristic, ROS and the static analysis
tools. In order to simplify reading, henceforward, quality metrics will be referred solely as met-
rics.

2.1. Code Quality

Quality itself is actually quite difficult to define because all the qualities are subjective and there
is no way to rate it, so every person will see it differently, that is why there are so many differ-
ent thresholds for the same programming/coding language. Some define quality as a “system-
atic set of activities that ensures that software processes and products conform to requirements,
standards, and procedures” (NASA, 1989). Others, give multiple meanings to quality, for in-
stance, Juran (1974) gives two meanings to the word quality, which are:

1. “Quality means those features of products which meet customer needs and thereby provide
customer satisfaction.”

2. “Quality means freedom from deficiencies”

7

2.1. Code Quality

One of the first definitions of quality was given by Shewart (1931): “There are two common
aspects of quality: one of them has to do with the consideration of the quality of a thing as an
objective reality independent of the existence of man. The other has to do with what we think,
feel or sense as a result of the objective reality. In other words, there is a subjective side of
quality.”

There is also some people that see it in some different perspectives like Kitchenham and
Pfleeger (1996), together with the teachings of Garvin (1988) identified five different perspec-
tives on quality:1

1. The transcendental perspective - deals with the metaphysical aspect of quality. In this
view of quality, it is “something toward which we strive as an ideal, but may never imple-
ment completely” (Kitchenham and Pfleeger, 1996).

2. The user perspective - is focused in the adequacy of the product in a certain context. The
user view is more concrete, based in the product characteristics that meet the user’s needs,
however the transcendental view is more aerial. (Kitchenham and Pfleeger, 1996)

3. The manufacturing perspective - represents quality as conformance to requirements.

4. The product perspective - the quality can be evaluated by measuring the inherent charac-
teristics of the product.

5. The value-based perspective - acknowledge that different perspectives can have different
degrees of importance, or value to the various stakeholders.

The perspective addressed in this research project is the manufacturing perspective, because the
software quality is directly linked with the compliance of the quality model requirements. A
further explanation about the quality model requirements is given on Section 2.1.3.

As stated before, there are different quality models each one created with its own purpose.
Let’s focus, for instance, on a standard model like ISO/IEC 9126 (Quigley et al., 2009). This
standard describes a software quality model that is divided into six characteristics:

• Functionality

• Reliability

• Usability

1Source: http://en.wikipedia.org/wiki/Software_quality

8

http://en.wikipedia.org/wiki/Software_quality

2.1. Code Quality

• Efficiency

• Maintainability

• Portability

These characteristics, as presented in Figure 2.1, are also subdivided into twenty-seven sub-
characteristics (Heitlager et al., 2007).

Figure 2.1.: The external and internal characteristics - ISO 9126-1 (ISO/IEC, 2001).

The standard ISO/IEC 9126 provides a framework that allows every organization to define his
own quality model. With that possibility, each organization has the chance to specify accurately
his own target values for quality metrics (Heitlager et al., 2007).

To get a better understanding of code quality it is convenient to distinguish the different quality
types, such as:

• External quality,

• Internal quality,

• Quality in use.

The Internal quality concerns with the static properties of the code that can be measured
without executing it. The External quality concerns with the behavior of the software when it

9

2.1. Code Quality

is executed. The Quality in use according to Bevan and Azuma (1997) “is the user’s view of
the quality of a system containing software, and is measured in terms of the result of using the
software, rather than properties of the software itself. Quality in use is the combined effect of
the software quality characteristics for the end user.”

As mentioned by Heitlager et al. (2007), it is believed that internal quality has an impact in
the external quality, which in turn impacts with the quality in use (Figure 2.2). These three types

Figure 2.2.: Software quality - life cycle - ISO 9126 (Bevan and Azuma, 1997; ISO/IEC, 2001).

of qualities are directly linked to code quality, but not all can be measured through the use of
autonomous static analysis tools. Thus, the only type of quality addressed in this project is the
internal quality, because it is easier to gauge and, as previously mentioned, the internal quality
has an impact with the other two types of quality. To gauge something about the quality of
the source code it is necessary to focus on a particular characteristic of the internal quality, the
maintainability (Figure 2.3). The chosen characteristic is the maintainability because it can be
measured by automatic tools without having the need to execute the code.

2.1.1. What is Maintainability?

In software engineering, the maintainability is defined by the simplicity and the ease how changes
can be made in a software system in order to:

10

2.1. Code Quality

Figure 2.3.: Internal quality - Highlighted maintainability characteristic (ISO/IEC, 2001).

• correct faults,

• adapt the system to meet new requirements,

• prevent unexpected breakdowns,

• add, remove or update functionalities,

• correct errors or deficiencies when they occur,

• adapt the software or take actions to reduce further maintenance costs.

More formally, the IEEE Standard Glossary of Software Engineering Terminology (IEE) de-
fines maintainability as: “The ease with which a software system or component can be modified
to correct faults, improve performance or other attributes, or adapt to a changed environment.”

In a more general point of view there are a few factors that ensures the maintainability of
the software, such as the ease of, understanding how the software works (Why does it works that
way? What does it do?), find what needs to be changed, and making changes without introducing
bugs.

11

2.1. Code Quality

The Importance of Maintainability

A maintainable software ensures that the system downtime is reduced as well as the updates done
in the software are much faster and cheaper, thus, guaranteeing the possibility to reuse code due
to low cost and update time.

Let’s focus on a more practical example, imagine a team of software developers that are work-
ing together in a project and they split the work between each other. Now, consider one of the
following events: a developer leaves the team and the others need to use his code, the need of
hiring someone new that have never seen the code that the team has been developing or, for some
reason, the team has to suspend the project for a certain period of time and at the end of a few
months/years they have to re-use the code that was developed. Regardless the case, the develop-
ers will lose a huge amount of time trying to understand the code and how it fits together. This is
a really negative aspect because the time they are losing trying to understand the code could be
invested in improving it or creating new features. It is then possible to state that, a maintainable
software is easier to understand for someone that have not seen it before or someone that stopped
working with it for a long period of time.

Measuring the Maintainability

As stated before, in this report, the maintainability is one characteristic of the internal quality
and a way to gauge it is through the study and measurement of metrics. However, it is important
to notice that not all the companies use only the metrics to measure the software quality.

On a attempt to measure the maintainability of software systems, based on the source code,
Omar and Hagemeister; Coleman et al. proposed the Maintainability Index (MI) (Heitlager et al.,
2007). MI is a mathematical formula which uses source code metrics as variables and the results
of this formula illustrates the maintainability of the software. There is no formula considered the
best to measure the MI, because it varies according to each company’s focus and needs. To enable
a software analysis through maintainability it is also necessary to map the system characteristics
onto code properties, as shown in Figure 2.4 (Heitlager et al., 2007).

2.1.2. Metrics

Metrics are the measurement of a particular attribute of the program software. Many of this
attributes point to the complexity of the program, which makes them good indicators of quality.
However all of this is subjective, hence the need for quality models to define thresholds for the
different metrics.

12

2.1. Code Quality

Figure 2.4.: Maintainability sub-characteristics and the source code properties proposed by ISO/IEC
(2001).

Software industry uses metrics with the objective of verifying the efficiency, progress, quality
and performance of the software. They provide information about the software status, which is
helpful to obtain an objective assessment of the software.

Companies may be focused on different objectives or purposes, such as: Software quality,
Programming complexity, Software sizing and scheduling. It is hard to determine which metrics
matter, and their meaning (Binstock; Kolawa) so the set of metrics used to measure the internal
quality of the software are not yet universally defined by the Software Engineering community.
However, many people have proposed different ways to measure the software attributes, but just
a few metrics have prevailed. These metrics, among others, are analysed by static analysis tools
and they can be sorted into:

• File-metrics,

• Function-metrics,

• Class-metrics.

This kind of sorting is the most common in software engineering, however, the ensemble of
metrics may vary. Table 2.1 illustrates the set of metrics defined by ROS (Kuehn, 2013), which
in turn, are the ones studied and measured in this research project.

13

2.1. Code Quality

Table 2.1.: Set of metrics used on ROS threshold (Kuehn, 2013).

File-Based Function-Based Class-Based

Comment to code ratio Cyclomatic Complexity Coupling Between Objects
Number of Executable Lines Number of Immediate Children
Number of Function Calls Weighted Methods per Class
Maximum Nesting of Control Deepest Level in Inheritance
Estimated Static Path Count Number of Methods Available

It will now be presented a more thorough description of the metrics presented in Table 2.1.
Furthermore, in some metric descriptions, it is also given an example of the metric application in
a function or program, in order to help understanding the operation of each one. In addition, it is
important to notice that many of these definitions were based on the document written by Krusko
(2004).

Comment Code Ratio

The Comment Code Ratio (COMR) metric represents the percentage (%) of the comment lines
(COM) existing in a C program. Blank lines and lines of code do not count as lines of comment.
The COMR value can be obtained by the following equation:

COMR =
100(%) ∗ COM

(COM + LOC)

#include <stdlib.h>

/* This is one more example */

int main(void){

// This will print a pretty string on your screen

printf{"This is a just an example"};

return 1;

}

/*

* You can

* also have

* loads of

* comments

14

2.1. Code Quality

*/

/* This program has 9 lines of comment and 4 lines of code */

Listing 2.1: A simple program written in C.

According to the previous equation, the program presented in Listing 2.1 has a comment code
ratio value of 69.23%.

COMR =
100(%) ∗ 9
(9 + 4)

=
900

13
= 69.23%.

Cyclomatic Complexity

In 1976, Thomas McCabe (McCabe, 1976) introduced the Cyclomatic Complexity (CC). CC is a
software metric used to measure the number of linearly-independent paths of a program or even
individually to functions, modules, methods or classes. Functions with high CC are more difficult
to understand and it also indicates inadequate modularization. This metric can be counted as the
number of logical operators (do-while, for, if, switch and while) plus one. For instance, an empty
function has a CC value of 1.

Figure 2.5 presents the flow graph of the function defined in Listing 2.2, showing the behavior
of the program/function after encountering any decision and how it reacts to them, leading always
to a Final State, in this particular case, end of function. The following function example, shown
on the left side (Listing 2.2), has a CC value of 3.

15

2.1. Code Quality

int function_1(int arg1, int arg2)

{

if(arg1==1) /* 1 */

{

return arg1;

}

else if(arg2==1) /* 2 */

{

return arg2;

}

else

{

printf(...);

}

return 0;

}

/* CC: 2 + 1 = 3 */

Listing 2.2: Cyclomatic complexity of FUNCTION 1.
Figure 2.5.: Control flow graph of the function de-

fined in Listing 2.2.

Number of Executable Lines

The Number of Executable Lines (NEL) metric counts all the lines of code in a function, ex-
cept for comments, braces and declarations (Krusko, 2004). The following function example
(Listing 2.3) has a NEL value of 7.

int main(){

int marks[10],i,n,sum=0;

printf("Nr of students:"); /* 1 */

scanf("%d",&n); /* 2 */

for(i=0;i<n;++i){ /* 3 */

printf("Enter mark for %d:",i+1); /* 4 */

scanf("%d",&marks[i]); /* 5 */

sum+=marks[i]; /* 6 */

}

printf("Sum= %d",sum); /* 7 */

return 0;

16

2.1. Code Quality

}

/* NEL: 7 */

Listing 2.3: Number of Executable Lines of MAIN.

Number of Function Calls

The Number of Function Calls (NFC) metric represents the number of functions called within a
function. Is important to notice that the NFC is the sum of every function call and not the number
of the distinct function calls. The following function example has (Listing 2.4) a NFC value of
5.

void function_2(){

int a=1,b=1,c=2;

switch (a) {

case b:

do_something(b); /* 1 */

do_something_more(a); /* 2 */

break;

case c:

do_something(c); /* 3 */

do_something_more(a); /* 4 */

break;

default:

do_nothing(b,c); /* 5 */

break;

}

}

/* NFC: 5 */

Listing 2.4: Number of Function Calls of FUNCTION 2.

Maximum Nesting of Control

The Maximum Nesting Control (MNC) is the maximum depth of nested branches and loops
(IF, SWITCH, DO WHILE, LOOP statements, etc) in a function. The value of this metric can
be reduced by simply separating this nested branches and loops into separated functions. The

17

2.1. Code Quality

reduction of the MNC value provides an easier read/trace of the source code and it also reduces
the CC value of the function (Krusko, 2004). The following function examples have a MNC
value of 3 (Listing 2.5) and 2 (Listing 2.6).

void function_3(int x){

int i=0;

while(i < x){ /* 1 */

if(x == 1){ /* 2 */

/* statements */

}

else if (x == 2){ /* 3 */

/* statements */

}

else{

/* statements */

}

i++;

}

}

/* MNC: 3 */

Listing 2.5: Maximum Nesting Control of

FUNCTION 3.

void function_4(int max, int min)

{

if(m == n){ /* 1 */

printf("Max = Min");

}

else

{

int i = min;

int dif = 0;

while(i < max){ /* 2 */

i++;

dif++;

}

print("max-min=%d",dif);

}

}

/* MNC: 2 */

Listing 2.6: Maximum Nesting Control of

FUNCTION 4.

Estimated Static Path Count

The Estimated Static Path Count (ESPC) metric is similar to the Nejmeh’s NPATH. As Nejmeh
(1988) stated “NPATH, counts the acyclic execution paths through a function”. The value of this
metrics can be obtained from the product of each statement and their nested structures.

More specifically, ESPC (or NPath) value is obtained by the product of the statements present
in Table A.14, Appendix A.2. The following function example (Listing 2.7) has a ESPC value
of 8.

void function_5(int arg1, int arg2)

{

int res;

if (arg1 == arg2){

18

2.1. Code Quality

res = 1;

do_something(arg);

} /* block 1, 2 paths */

if (arg1 >= arg2){

res = 1

do_something(arg1);

} /* block 2, 2 paths */

if (arg1 < arg2){

res = -1;

do_something(arg2);

} /* block 3, 2 paths */

/* block 4 = block 1 * block 2 * block 3 = 8 */

}

/* NPath: 8 */

Listing 2.7: Static Path Count of FUNCTION 5.

The result for Listing 2.7 can be obtained from the calculation of the expression:

NPATH(FUNCTION) =

#block∏
i=1

block i = block1 ∗ block2 ∗ block3 = 2 ∗ 2 ∗ 2 = 8.

Number of Methods Available

The Number of Methods Available (NOM) metric basically is the sum of all the function CC
values divided by the number of methods found in a file. This can be expressed by the following
formula, where Ci represents the CC value of a function and n represents the number of functions
in that class.

NOM =

n∑
i=1

Ci

#Methods

Coupling Between Objects

The Coupling Between Objects (CBO) metric indicates the existing relationships between classes
in the package. If a class A is coupled/related with a class B, so both of the classes have at least
one relation (A↔ B), this means that the relations between classes are bidirectional.

19

2.1. Code Quality

Weighted Methods per Class

The Weighted Methods per Class (WMC) metric simply indicates the number of methods that
are defined in a class.

Number of Immediate Children

The Number of Immediate Children (NOC) metric represents the number of sub-classes that will
inherit the methods from the ancestor class.

Deepest Level in Inheritance

The Deepest Level in Inheritance (DIT) metric indicates the number of antecedent classes that
can affect the current class. As stated by (Chidamber and Kemerer, 1991), “The deeper a class
is in the hierarchy, the greater the number of methods it is likely to inherit, making it more
complex”.

The previous five class-metrics, respectively, CBO, WMC, NOC, DIT and NOM, were pro-
posed by Chidamber and Kemerer (1994, 1991).

2.1.3. Quality Models

Since a few decades until present, the quality models have been a well researched subject and
a variety of different models have been proposed. At first, such quality models did not seem to
be fully related with each other, however they all deal with software quality. Quality models are
constituted by a set of rules and practices that must be satisfied while developing software. The
set of rules, which encompasses the metrics and a metric value may vary depending on the com-
panies main focus and objectives. Rules are nothing more than a metric marked with a threshold
value (e.g. Maximum Cyclomatic Complexity of 10). To support this perspective Wagner (2013)
also claimed that the different between quality models “is caused by the different purposes the
models pursue”.

As known, these quality models are defined for different contexts and purposes, although
some thresholds are more restrictive that others due to the different importance of satisfying the
requirements. The requirements, of each quality model, can be qualified from Low to High and
this qualification is dependent of the importance of the metrics compliance.

It is also important to point out that quality models can be separated into two different types,
such as:

20

2.1. Code Quality

• Quality models oriented to violations - to each metric evaluated, if its value is out of
the scale (MIN and MAX), proposed by each quality model’s threshold, then the metric is
reported as a violation.

• Quality models oriented to grades - to each metric measured is assigned a note, depend-
ing of its value. For instance, a metric can be evaluated with a grade from 1 to 5, where 1
is considered Bad or not recommendable and 5 is considered excellent or recommendable.

The following sections presents a brief demonstration of the quality models proposed by some
companies.

NASA SATC Quality Model

The main objectives of the SATC NASA’s software metrics program encompasses three areas:

• Process Improvement;

• Quality Assessment;

• Process Improvement.

To meet the objectives listed above the SATC has collected measurement metrics that could
assist the project managers and developers, from NASA and contractor, to evaluate the quality of
their products/software and also to give a knowledge about the risks of their projects. (Software
Assurance Technology Center, 2000a)

NASA SATC has High requirements for his proposed threshold values and those values can
be found in Tables A.1, A.2 and A.3, Appendix A.1 (Software Assurance Technology Center,
2000b; Kuehn, 2013).

HIS: Hersteller Initiative Software Quality Model

HIS is composed of five groups from the Automotive manufacturer “whose goal is the production
of agreed standards within the areas of Standard software modules for networks, Development
of process maturity, Software test, Software tools and Programming of ECU’s.” (Kuder, 2008).

HIS has not proposed any class-metrics, but it has High requirements for his remaining pro-
posed threshold values and those values can be found in Tables A.8 and A.9, Appendix A.1 (Kuder,
2008; Kuehn, 2013).

21

2.1. Code Quality

KTH: Royal Institute of Technology Quality Model

The main objective of KTH is to choose the software metrics that are implicitly related with the
quality of real time software and to define a threshold for the metrics. The definition of this
threshold will provide a better software quality and will also improve the process of software
development. (Krusko, 2004)

KTH has Low requirements and it has only proposed function-metrics that can be found in
Table A.7, Appendix A.1 (Krusko, 2004; Kuehn, 2013).

UNAK: University of Akureyri in Iceland Quality Model

The objective of the University of Akureyri in Iceland was to gather information about the dif-
ferent existing thresholds and create a unique threshold according to the metrics utilized in the
RefactorIT2 tool.

University of Akureyri in Iceland has not proposed any function-metrics, but it has Low re-
quirements for his remaining proposed threshold values and those values can be found in Ta-
bles A.10 and A.11, Appendix A.1 (Brooks, 2008; Kuehn, 2013).

ROS Quality Model

Even knowing that there is already a threshold defined specifically for ROS, the other thresholds
(NASA SATC, HIS, KTH and UNAK) were also used, because, according to Kuehn (2013), the
ROS threshold was derived from those four thresholds. The ROS threshold values should be used
as guidelines until the ROS community propose an official threshold for ROS. For this reason
ROS can be considered to have a Low level on his requirements, and its threshold values can be
found in Tables A.4, A.5 and A.6, Appendix A.1 (Kuehn, 2013).

SIG Quality Model

SIG created his threshold inspired in the structure proposed by ISO 9126 (Figure 2.4) and, as
such, they set different values for each of the code properties (volume, complexity per unit,
duplication, unit size and unit testing). The values for these properties are not evaluated for a
MIN and MAX value as those mentioned above, but with ? on a scale of 1 to 4, being 4 ? the best
grade and 1 ? the worst grade.

2http://sourceforge.net/projects/refactorit/

22

http://sourceforge.net/projects/refactorit/
http://sourceforge.net/projects/refactorit/

2.2. Robot Operating System

In 2014, SIG provided a guidance document (Visser, 2014) with the threshold values that
are required to achieve a certification of 4 ?. The threshold values for SIG can be found in
Tables A.12 and A.13, Appendix A.1 (Heitlager et al., 2007).

SIG also uses the following formula, introduced by Omar and Hagemeister (1992), to calculate
the MI of his software.

MI = 171 − 5.2ln(HV) − 0.23CC − 16.2ln(LOC) + 50.0sin(
√
2.46 ∗ COM)

However, not all the institutions use existing MI formulas, for example, Microsoft (2015) have
defined his own MI formula and threshold. The result values in its threshold range between 0
and 100, where the higher values means a better maintainability, while the lower value in turn,
means a worse maintainability. More objectively, a result between: 20 and 100 indicates that the
code has good maintainability, 10 and 19 indicates that the code is moderately maintainable and
the remaining results indicates low maintainability (Microsoft, 2015).

2.2. Robot Operating System

Developing software for robots is not an easy task. Thus, many robotic middleware frameworks
have been proposed, with the purpose of easing the development of software for robots. Some
of these robotic middleware frameworks are fully open source and they possess an ascendant
community. The Robot Operating System3 (ROS) is the robotic middleware focused in this re-
search project, due to its large community, the huge number of available projects and its growing
maturity.

According to Quigley et al. (2009), Willow Garage, a Personal Robots4 (PR) program, to-
gether with the STanford AI Robot5 (STAIR) project at the Computer Science Department of
Stanford University, had the need to create a system that meet a specific set of challenges for
developing large-scale service robots. ROS was the system developed by these teams and its ar-
chitecture is more general than the service-robot and mobile-manipulation domains. This system
was designed to be a open source, thin, multilingual and tools-based framework with a peer-to-
peer architecture. The development of ROS took place around the 2000s, while in 2007, Willow
Garage with the help of a huge number of researchers, provided enough resources to expand the
concepts of ROS and create well-tested implementations.

3http://www.ros.org/
4http://pr.willowgarage.com/
5http://stair.stanford.edu/

23

http://www.ros.org/
http://pr.willowgarage.com/
http://stair.stanford.edu/
http://www.ros.org/
http://pr.willowgarage.com/
http://stair.stanford.edu/

2.2. Robot Operating System

ROS is an open-source, collection of software structures for a robot. It provides the ex-
pected standard services from an operation system such as hardware abstraction, implementation
of commonly-used functionality, low-level device control, package management and message-
passing between processes. It also provides libraries and tools for obtaining, running, writing
and building code on multiple computers. Even knowing the importance of a low latency and
reactivity in a robot control, ROS is not a real-time system, but it is possible to integrate ROS in
real-time code. ROS main developing languages are C++ and Python, although it offers support
for many other programming languages, and a support for C language will be possible with the
release of ROS 2.

The ROS system is organized into packages, metapackages and stacks6. A package in ROS
might be constituted for ROS nodes, a ROS-independent library, a dataset, configuration files and
a third-party piece of software. Briefly, the packages contains all the source code that is used by
robots. The metapackages, unlike packages, do not contain any tests, code, files, or other items
usually found in packages. A metapackage is only responsible to make reference of the related
packages. A ROS stack is a simple folder that contains a different set of packages.

A system in ROS is constituted by a set of nodes that communicate with each other follow-
ing the publisher-subscriber model. The nodes have different types of communication such
as streaming topics7, RPC services8, and the Parameter Server9 (Quigley et al., 2009; Conley,
2012). Figure 2.6, adapted from Santos (2015), illustrates a diagram with the operation of a ROS
system. ROS is composed by different layers, however, this research project is only focused on
the operational layer and not on ROS core itself.

In order to validate this project several robots, implemented using ROS, such as Kobuki10,
Turtlebot11, PR212, Motoman13, and some others were used as case of study. To these robots it
was performed a static analysis to their source code in order to access its quality. This analysis
is possible due to the ROS policy of keeping all the developed code public on GitHub14.

Initially, in order to get a better understand of the ROS arquiteture, the robot Kobuki was
studied due to his simplicity and low complexity compared to other existent robots. Kobuki is a
low-cost mobile robot base that can be used by other robots, such as the Turtlebot. Both Kobuki

6ROS meta-packages, packages and stacks: http://www.ros.org/browse/list.php
7http://wiki.ros.org/Topics
8http://wiki.ros.org/Services
9http://wiki.ros.org/Parameter%20Server

10http://kobuki.yujinrobot.com/home-en
11http://www.turtlebot.com/
12https://www.willowgarage.com/pages/pr2/overview
13http://www.motoman.com/
14https://github.com/

24

http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Parameter%20Server
http://kobuki.yujinrobot.com/home-en
http://www.turtlebot.com/
https://www.willowgarage.com/pages/pr2/overview
http://www.motoman.com/
https://github.com/
http://www.ros.org/browse/list.php
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Parameter%20Server
http://kobuki.yujinrobot.com/home-en
http://www.turtlebot.com/
https://www.willowgarage.com/pages/pr2/overview
http://www.motoman.com/
https://github.com/

2.3. Static Analysis Tools

Figure 2.6.: Simplified diagram with the behavior of a ROS system (Santos, 2015).

and Turtlebot, but more specifically the Kobuki, are designed with education and research pur-
poses in mind More particularly, Kobuki itself already provides a set of features, such as keyboard
remote operation, autodocking, visualisation and simulation tools, and a safety controller, that
uses sensor information to randomly navigate without colliding with any other object.

2.3. Static Analysis Tools

The analysis of the static properties of code is really important if we want to assess the software
quality. In the area of robotics, the robots are considered safer if the software developed to them
is in compliance with the rules and practices of a quality model (i.e. software with good quality).
Nowadays, with the growth of the application security market it became really important to
ensure that the software is safe and maintainable. This growth influenced also the creation and
development of a variety of static analysis tools, some of them commercial/paid and others open
source/free. Both, commercial and open source tools have its own pros and cons, however, the
choice of the most viable and appropriate tool is dependent on the company aim, objectives,
budget, target programming language, and many others. Table 2.2 contains a set of pros and
cons, introduced by Vonnegut (2015) to these two types of tools.

Is important to be aware that some tools are able to analyse more than a single programming
language. However, the tools of interest are the ones capable of analysing C++ code, because
this is the programming language focused in this project.

This section provides a brief description of the tools studied in this project, as well as the
importance in developing or extending a tool that is tailored for ROS.

25

2.3. Static Analysis Tools

Table 2.2.: Pros and cons of commercial and open source tools (Vonnegut, 2015).
Commercial Tools Open Source Tools

Pros

• Guaranteed support
• Main focus on their product
• Better reporting
• More complete vulnerability coverage
• Long term viability with road-map

• Free of upfront costs
• More eyes on the code
• Flexibility
• Smart way to ease into Static
Code Analysis tools

Cons

• Prohibitive cost
• Too big companies lose their passion
and support quality
• Only the vendor can fix issues in
the code

• Limited support and liability
• More eyes don’t necessarily make
all bugs shallow
• Cost in resources and staff time
• Harder to Scale – Especially coding
in different languages

Open Source Tools

This subsection presents some of the most relevant open source tools studied during the time
frame of this research project.

Lint (Joh) is a static analysis tool which works similarly to a compiler, more particularly it
checks the syntactical correctness of C and C++ source code files. More than a tool, Lint is a
term given to a program responsible to perform static code analysis and detect suspicious usage
in source code files for any programming language.

Lint was not a tool of interest for this project, because it does not perform any analysis to
code metrics. This tool is mainly focused on checking the syntactical correctness of C and C++
source code files. However, it was relevant to study this tool because it was one of the first static
analysis tools and the term “lint” was stemmed from it.

ROS Static Analysis Tool (Santos, 2015) is a web-based platform to gauge the code quality
of ROS projects, offering a visual component which reports the metrics with no compliance
and a graph to check the dependencies between packages. Currently, this is the only existent
tool directly tailored to ROS. According to Santos (2015), it is a flexible and extendable tool
(extendable with plugins), so it should be suitable to many different types of quality analysis.
The extensibility of the tool is achievable through the creation of new plugins. Currently this
tool only supports analysis for coding standards, but apart from the analysis the tool also has
a graphic component, which allows to check the dependencies between packages, as well as
more detailed information from each package (e.g. name, description and violated rules). Due
to its flexibility and extensibility, the tool can be improved through the creation of plugins or
new components. For instance, the addition of a new kind of static analysis is considered an

26

2.3. Static Analysis Tools

improvement.
SonarQube15 (previously known as Sonar) is a web-based platform to manage code quality,

offering visual reporting on and across projects. Just like ROS Static Analysis Tool, SonarQube
extensibility is achieved through the creating of new plugins. Currently, the tool covers more
than twenty programming languages, due to the large amount of existing plugins. SonarQube is
a open source tool, however SonarSource proposed some commercial plugins to cover additional
programming languages and to manage projects along with Professional services. As opposed to
ROS Static Analysis Tool, SonarQube is not tailored for ROS, however it is capable of measuring
the quality of many other types of programming languages.

CCCC16 is a static analysis tool which analyses C++ source code files and generates a report
with the various internal quality metric measurements. According to the others open source
tools studied the CCCC is the one that arouses a greater interest, because the number of metric
measured is far superior to any of the other tools.

OCLint17 is a static analysis tool for C, C++ and Object-C that detects potential problems on
code, such as (Saito, n.d.):

• Possible bugs - empty if/else/try/catch/finally statements,

• Unused code - unused local variables and parameters,

• Complicated code - high cyclomatic complexity, NPath complexity and high NCSS,

• Redundant code - redundant if statement and useless parentheses,

• Code smells - long method and long parameter list,

• Bad practices - inverted logic and parameter reassignment,

• and many others.

OCLint is a standalone tool that runs on Linux and Mac OS X platforms and it can executed
through a shell.

Vera++18 is a programmable static analysis tool which analyses C++ source code files. Vera++
can be seen as a parser for C++ language and the results of its parsing are presented in scripts.

15http://www.sonarqube.org/
16http://sourceforge.net/projects/cccc/
17http://oclint.org/
18https://bitbucket.org/verateam/vera/wiki/Home

27

http://www.sonarqube.org/
http://sourceforge.net/projects/cccc/
http://oclint.org/
https://bitbucket.org/verateam/vera/wiki/Home
http://www.sonarqube.org/
http://sourceforge.net/projects/cccc/
http://oclint.org/
https://bitbucket.org/verateam/vera/wiki/Home

2.3. Static Analysis Tools

The scripts are responsible for conducting the analysis of the parsed information, so the users
can change the scripts to meet his own needs.

CLoc19 is a portable tool entirely written in Perl which analyses the source code of many
different languages. Some of the code metrics analysed by the tool are: blank lines, comment
lines, and physical lines.

SLOCCount20 is a set of tool responsible to count the number of physical source lines of
code for many programming languages. According to the author this tools was used in his
paper (Wheeler, 2001) to measure the source lines of code of the entire GNU/Linux distributions.

CLang21 is a static analysis tool for C, C++ and Objective-C programs that can be executed
within Xcode22 or as a standalone tool, enabling its use in other UNIX23 operating systems
instead of only Mac OS X.

Locmetrics24 is a static analysis tool executable in Windows operating systems analyses C#,
C++, Java, and SQL source code files. This tool is capable of measuring some code metrics,
such as: lines of code, blank lines of code, comment lines of code, lines with both code and
comments, logical source lines of code and cyclomatic complexity.

Egypt25 is a small script written in Perl that uses both GCC’s and Graphviz26’s capabilities to
generate a function call graph of a C program. The tool also supports C++ source code files, but
the support for this programming language is limited.

c count27 is an easy portable static analysis tool that measures some code metrics from C
source code files, such as number of lines and statements, and the percentage of whitespace,
comments and code.

c lines28 is a simple script written in Awk29 whose main function is to measure the lines of
code in a C source code file, not including comments, blank lines or form feeds.

ftrace30 is a tracing tool used to calculate the system calls, function calls and signals of a
directory or a single C source code file.

19https://github.com/AlDanial/cloc
20http://www.dwheeler.com/sloccount/
21http://clang-analyzer.llvm.org/
22https://developer.apple.com/xcode/
23http://www.unix.org/
24http://www.locmetrics.com/
25http://www.gson.org/egypt/egypt.html
26http://www.graphviz.org/
27http://invisible-island.net/c_count/c_count.html
28http://stjarnhimlen.se/snippets/c_lines.awk
29http://web.mit.edu/gnu/doc/html/gawk_toc.html
30https://sourceware.org/frysk/manpages/ftrace.1.html

28

https://github.com/AlDanial/cloc
http://www.dwheeler.com/sloccount/
http://clang-analyzer.llvm.org/
https://developer.apple.com/xcode/
http://www.unix.org/
http://www.locmetrics.com/
http://www.gson.org/egypt/egypt.html
http://www.graphviz.org/
http://invisible-island.net/c_count/c_count.html
http://stjarnhimlen.se/snippets/c_lines.awk
http://web.mit.edu/gnu/doc/html/gawk_toc.html
https://sourceware.org/frysk/manpages/ftrace.1.html
https://github.com/AlDanial/cloc
http://www.dwheeler.com/sloccount/
http://clang-analyzer.llvm.org/
https://developer.apple.com/xcode/
http://www.unix.org/
http://www.locmetrics.com/
http://www.gson.org/egypt/egypt.html
http://www.graphviz.org/
http://invisible-island.net/c_count/c_count.html
http://stjarnhimlen.se/snippets/c_lines.awk
http://web.mit.edu/gnu/doc/html/gawk_toc.html
https://sourceware.org/frysk/manpages/ftrace.1.html

2.3. Static Analysis Tools

Commercial Tools

This subsection presents the commercial tools studied during the time frame of this research
project. However, the tools of interest for this project are the open source, that is why just a few
commercial tools were studied.

QA·C++31 is the tool proposed by Kuehn (2013) to measure all the proposed metrics in Ta-
ble 2.1. QA·C++ is a static analysis tool for C++ projects and it analyses the code against a
chosen coding standard, with metrics and code structure visualizations. The tool has compliance
packages for MISRA C++, HIC++ and JSF AV C++ coding standards.

Testwell CMT++32 is a static analysis tool that measures some code metrics from C++ source
code files, such as: lines of code (number of blank lines, lines with comments, physical lines and
program code lines), Halstead’s metrics, McCabe cyclomatic number and maintainability index.

Parasoft C/C++test33 is a static analysis tool which performs static code analysis, data flow
analysis, and metrics analysis for C and C++ source code files.

The idea of creating or extending an autonomous open source static analysis tool directly
tailored to ROS was really interesting, because only some commercial tools are capable of mea-
suring all the metrics outlined above in Table 2.1, Section 2.1.2 and, on the other hand, these
tools are not tailored for ROS projects. Besides that, the creation or improvement of a open
source tool would be an huge contribute to ROS community.

Fortunately, both ROS Static Analysis Tool and SonarQube are extendable, but the one that
most closely matches the intended for this project is the ROS Static Analysis tool, because it is
already tailored for ROS and it is extensible for any other kind of static analysis, like the one
studied in this project. This extensibility is achievable through the creation and inclusion of one
or more plugins responsible to check the compliance of an huge number of ROS packages.

31http://www.programmingresearch.com/products/qacpp/
32http://www.verifysoft.com/en_cmtx.html
33https://www.parasoft.com/product/cpptest/

29

http://www.programmingresearch.com/products/qacpp/
http://www.verifysoft.com/en_cmtx.html
https://www.parasoft.com/product/cpptest/
http://www.programmingresearch.com/products/qacpp/
http://www.verifysoft.com/en_cmtx.html
https://www.parasoft.com/product/cpptest/

3. Contribution

As presented in Section 2.1, there is a wide variety of quality models, as well as the set of metrics
proposed by each one of them. However, a large part of the assessed quality models (including
the one proposed for ROS) are thresholds, and therefore, the quality models of interest for this
project are the ones oriented to violations and the set of metrics proposed from them are the ones
present in Table 2.1. The main focus for this research project is to develop and implement a
system for measuring the code quality of ROS projects in a existent static analysis tool already
tailored for ROS. Remarkably, as concluded in Section 2.3, the ROS Static Analysis Tool (Santos,
2015) is the most suitable tool for this project, because it allows the definition of different quality
model’s thresholds, as well as the definition of a new analysis method for measuring the ROS
projects, in this particular case, the metric measurement. Hence, in this context, the first step
consists in encapsulating some of the static analysis tools presented in Section 2.3 as plugins
for this system, therefore this system can be seen as a toolset for the ROS Static Analysis Tool.
The following step consists in defining a rule (Rule: a metric marked with a threshold value)
for each threshold set by the quality models. The ROS Static Analysis Tool is itself oriented
towards violations, and so does the threshold rules, since they detect violations to the quality
model. Finally, the toolset is applied to a number of repositories, serving not only as validation
of the plugin but also to the study the state of the art of ROS corpus.

In order to avoid the constant use of the tool name, from now until the end of the report the
ROS Static Analysis tool can also be referred to as the main tool, since the developed system is
a toolset for this tool. More specifically, the main tool is responsible for fetching source code
from the selected ROS projects, executing the plugins on them and display the results through a
graphic component.

The following sections are destined to the presentation of the main tool, the developed toolset
and data analysis. More particularly, Section 3.1 contains a more detailed presentation of the
main tool, emphasizing its architecture, such as creations of plugins and how to use them. Sub-
sequently, Section 3.2 contains a deep introduction to the toolset, referring its functioning, capa-
bilities, the calculated metrics and how to get the information about the quality measurements.

30

3.1. ROS Static Analysis Tool Architecture

Finally, Section 3.3 contains the data acquired after evaluating a number of ROS repositories.

3.1. ROS Static Analysis Tool Architecture

The ROS Static Analysis tool is executable from a UNIX shell and it is responsible for managing
the repositories, updating the database and executing the plugins for the static analysis on source
code. The execution of the main tool can be separated in two phases, the startup phase and
the execution phase. Consecutively, the execution phase is also subdivided into three different
stages, the update stage, the analysis stage and the export stage.

3.1.1. Startup Phase

Users have the control over the executable stages of this tool, and these stages are controlled
through the startup files and the command line arguments passed during the startup phase. These
arguments allow the user to skip an entire stage of execution or, more specifically, skip some
operations in each stage. If no arguments are granted in the startup phase, the main tool does not
skip any of the execution phases.

The startup files are composed by three different types of files, configuration file, rules file
and distribution filter file. The configuration file contains a list of plugins that can be loaded and
executed during the execution phase of the main tool. To avoid possible errors it is imperative that
the plugin name matches the file name. For instance, if the configuration file contains a plugin
with the name of “some plugin”, a file with the name “some plugin.py” must exist. Listing 3.1
shows an example of a configuration file, which contains the declaration of the plugins that will
be presented in the following section.

%YAML 1.1

Configuration file

plugins_unused: # The plugins listed here will be skipped

basic_metrics:

type: analysis

subtype: metrics

plugins_all:

cccc_rules:

type: analysis

subtype: rules

oclint_rules:

31

3.1. ROS Static Analysis Tool Architecture

type: analysis

subtype: rules

Listing 3.1: Example of a configuration file, named config.yaml.

The previous example shows how the plugins are declared, so it is assumed that a folder named
plugins exists, containing three plugins with the names of cccc rules.py, oclint rules.py and ba-

sic metrics.py. The rules file contains the list of rules to which the plugins may register viola-
tions. For each defined rule is possible to add a set of tags, which are used in the process of
filtering the rules violated. These tags provide the filtering of a set of violations found for a
certain quality model, or even a certain metric. Listing 3.2 shows an example of how rules are
currently defined. This example only contains a small set of the defined rules, however the full
set of defined rules, for the different quality models, can be found in Appendix B.

%YAML 1.1

Rules file.

-

id: 1

name: MIN_COM_RATIO

scope: file

description: "Minimum lines of comments: 20%"

tags:

- metrics

- nasa-satc

- his

- uai

- ros

- comment-ratio

-

id: 2

name: MAX_COM_RATIO

scope: file

description: "Maximum lines of comments: 30%"

tags:

- metrics

- nasa-satc

- comment-ratio

Listing 3.2: Example of a set of rules defined in the rules file, named rules.yaml.

32

3.1. ROS Static Analysis Tool Architecture

As a side note, editing or removing the existing rules might cause the malfunctioning of the plu-
gin. The distribution filter file contains the set of packages that are analysed during the execution
phase of the main tool. The user has the possibility of choosing the packages that are analysed,
but it must be ensured that the packages that are identified in the filtering file are also present in
the distribution file. Listing 3.3 shows an example of the filter file, containing a set of Kobuki’s
packages that are used, as evaluation, in the data analysis.

%YAML 1.1

Filter file.

packages:

kobuki:

- kobuki_keyop

- kobuki_node

- kobuki_random_walker

- kobuki_safety_controller

kobuki_core:

- kobuki_driver

yujin_ocs:

- yocs_cmd_vel_mux

- yocs_safety_controller

- yocs_velocity_smoother

Listing 3.3: Example of a filter file, named filter.yaml.

To contextualize, the distribution file follow a concept acquired from ROS, which in turn follows
the REP 141 (Thomas, 2013). As stated from Thomas (2013), “REP specifies a set of files
which define ROS distributions and facilitate the building, packaging, testing and documenting
process”. This REP is a revision of the REP 137 (Tully Foote and Mathieu, 2013) version. More
specifically, the file contains all the known packages from a ROS distribution and the web address
(also called a URL1) of their GitHub repositories. Is also important to notice that all the previous
files are written in a YAML2 format, because of its human friendly data serialization.

1http://dictionary.reference.com/browse/uniform%20resource%20locator
2http://yaml.org/

33

http://dictionary.reference.com/browse/uniform%20resource%20locator
http://yaml.org/
http://dictionary.reference.com/browse/uniform%20resource%20locator
http://yaml.org/

3.1. ROS Static Analysis Tool Architecture

3.1.2. Execution Phase

Right after the startup phase, the main tool enters in the first stage of the execution phase, the
update stage. During this stage the tool, through the reading of the distribution file and filter
file, tries to update the local source files and the database, with the information of the remote
repository. In this stage the main tool also reads the rules file, in order to keep the analysis rules
updated.

Immediately after the update stage comes the second stage of the execution phase, the analysis
stage. This is the stage responsible for all the analysis performed at the source code by executing
the plugins provided to the tool. The plugins are responsible for verifying the rules violated in
the ROS projects, which in turn can be visualized in the main tool. A deeper explanation is given
in the following sections.

The last stage of the execution phase is the export stage. This is the stage where the data,
present in the database, is exported under data files. All the exported data, like the rules violated
in each file or package, can be visualized through the graphic component of the main tool. A
deeper presentation of how the graphic component can be used, to inspect the exported data, is
given on the Subsection 3.2.2.

3.1.3. Creating Plugins to the Main Tool

Creating plugins is a way to extend the main tool functionality and, as previously mentioned, the
main purpose of this research project is the development of plugins capable of assessing the code
quality of the ROS projects.

In the current state, the main tool provides a small application program interface (API) to
plugins developed in Python. With the aid of the functions provided by the API, the plugins are
capable of connect, withdraw information and register its results in the main tool’s database. The
following list presents some of the functions provided by the API and utilized in the developed
toolset.

PLUGIN RUN(self): PLUGIN RUN is the function responsible to create a bridge between
the plugins and the main tool. This is also the first function to be executed in every plugin,
and it has a similar behavior of the main functions defined, for example, in C and C++.
The PLUGIN RUN function must be defined in every plugin, otherwise the main tool will
not be able to load it or execute it.

GETRULEINFO(self, name=None): GETRULEINFO is the function responsible to get the
registered rules entries from the database.

34

3.2. Rule Violation Finder

GETPACKAGEINFO(self): GETPACKAGEINFO is the function responsible to get the regis-
tered packages entries from the database.

GETFILEINFO(self, package id=None, ext=None): GETFILEINFO is the function respon-
sible to get the registered source code files entries from the database.

WRITENONCOMPLIANCE(self, rule id, package id, file id=None, line=None, function=None,

comment=None): WRITENONCOMPLIANCE is the function responsible to register non-
compliance occurrences in the database. The arguments rule id and package id are manda-
tory, while the others are just optional since they are destined to additional information,
such as: source file, line number, function name, and a custom commentary.

3.2. Rule Violation Finder

Currently, there are many and different ways to extract the information about the source code
metrics, but each static analysis tool provide his own way of doing it. Considering this informa-
tion, the creation of a plugin to standardize the obtainment of these metrics becomes justifiable.
The plugin (i.e. Rule Violation Finder) is incorporated into the ROS Static Analysis Tool and it
can be seen as a toolset (i.e. a set of plugins).The plugins that constitute the toolset are, in turn,
scripts that incorporate some of the studied and presented tools in Section 2.3, in order to assist
the measurement of highest number of the required metrics. The toolset is targeted to quality
models oriented to violations, so it uses the thresholds proposed by: NASA SATC, HIS, KTH,
UNAK and ROS. Thus, the metrics which are intended to be measured are the ones that were
previously presented in the Table 2.1 of Section 2.1.2. SIG’s proposed quality model is not con-
sidered because is it based on grades and, as stated before, this toolset is only focused on quality
models oriented to violations.

Despite the large number of studied tools, presented in Section 2.3, the only ones used by this
toolset are the CCCC and OCLint, because these are the ones that best suit the needs/require-
ments of this project. More specifically, the CCCC tool works in different ways depending on
the files passed as argument in its execution. If a set of files are passed as argument to the tool,
such as a ROS package, a report is produced containing the sum of all the File-based metric
measurements of that package. In case of passing a single file as input, the tool produces several
reports with the Function-based and Class-based metrics of that file. This reports are exported in

35

3.2. Rule Violation Finder

two different formats, such as HTML3 and XML4, but only the exported XML reports are used
by the plugin. The OCLint tool, in particular, is used to obtain the Estimated Static Path Count
(NPath complexity). OCLint uses GNU Compiler Collection (GCC)5 to compile the source code
of a file before making his analysis. If GCC does not report any errors or warnings the tool out-
puts a set of information about the file, containing the NPath complexity value. It is also relevant
to notice that only the values that exceed the threshold are reported when the OCLint finish his
execution, so is important to set NPath maximum value to 0. With the NPath complexity rule set
to 0 every compilation reports the NPath value as a violation. This tool allows the exportation of
the results in different formats, but the one used to export the required information is the XML
format. An example of the reports generated from these tools (CCCC and OCLint) can be found
in the Sections C.1 and C.2, Appendix C.

Metrics such as NEL and NFC were not possible to be obtained, because none of the stud-
ied tools are able to measure them. The tool responsible to measure the ESPC (NPath) NPath
complexity metric (OCLint), as previously mentioned, only provides an output with the metric
values, if the GCC does not find any errors or warnings during his compilation. In many cases
the majority of the errors found, during the compilation, are caused by the lack of header files,
due to their absence or because the compiler can not locate them.

Given the low rate of the obtained values for the NPath, it can be assumed that this metric will
not be measured. But whenever the NPath metric is obtained it is displayed on the main tool, if
it exceed any of the thresholds.

Table 3.1 illustrates the metrics calculated from each plugin, as well as the non calculated
metrics.

Table 3.1.: Metrics obtained by each plugin.

Plugin oclint rules (is a script that
incorporates the OCLint tool)

cccc rules (is a script that
incorporates the CCCC tool)

Non-Calculated
Metrics

Metrics Estimated Static Path Count
Maximum Nesting of Control

Comment to code ratio
Cyclomatic Complexity
Coupling Between Objects
Number of Immediate Children
Weighted Methods per Class
Deepest Level in Inheritance
Number of Methods Available

Number of Executable Lines
Number of Function Calls

3http://www.w3.org/html/
4http://www.w3.org/XML/
5https://gcc.gnu.org/

36

http://www.w3.org/html/
http://www.w3.org/XML/
https://gcc.gnu.org/
http://www.w3.org/html/
http://www.w3.org/XML/
https://gcc.gnu.org/

3.2. Rule Violation Finder

The sections that follow provide a more detailed analysis of the measured metrics, the plugin
functioning, how the violations are found and how they are presented to the user.

3.2.1. Rule Violation Finder Architecture

Rule Violation Finder is the name given to the toolset responsible to measure and find the rules
that exceeded the threshold values. The toolset is composed of two plugins, both of them are
defined in the main tool and they are responsible for measuring the different code metrics.

As mentioned in Section 3.1 the main tool downloads the ROS projects to a certain path and
consecutively the files, of that project, are added to a database. As previously stated, the plugins
must have a function named PLUGIN RUN, which connects them to the main tool, and the way to
acquire the location of the packages and their files is done through a function called GETFILE-
INFO (an usage example of this function can be found in Listing 3.4).

def get_files(ctx):

cpp = ctx.getFileInfo(ext="cpp")

hpp = ctx.getFileInfo(ext="hpp")

files = []

for f in hpp:

files.append(f)

for f in cpp:

files.append(f)

return files

Listing 3.4: An usage example of the GETFILEINFO function, extracted from a made up script named

cccc rules

Right after populating the database, all the packages and files are individually read measuring its
metrics values, through the tools mentioned in the previous subsections. Right after getting these
measurement values an analysis is conducted in order to check if any of the metrics exceeded the
value of the thresholds, proposed in the Section 2.1.3. Finally, after the analysis is completed,
the plugins uses the WRITENONCOMPLIANCE function to add a line to the database with the
rule violated, file location, metric description and the respective threshold (an usage example of
this function can be found in Listing 3.5).

...

def handle_mnc(ctx, package_id, file_id, function, value, file_path):

37

3.2. Rule Violation Finder

Maximum nesting control

if int(value) > 4:

ctx.writeNonCompliance(13, package_id, file_id=file_id,

line=0, function=function, comment="Maximum nesting value is

greater than 4")

if int(value) > 5:

ctx.writeNonCompliance(14, package_id, file_id=file_id,

line=0, function=function, comment="Maximum nesting value is

greater than 5")

def handle_npath(ctx, package_id, file_id, function, value, file_path):

if value > 80:

ctx.writeNonCompliance(16, package_id, file_id=file_id,

line=0, function=function, comment="NPath is greater than 80

")

if value > 250:

ctx.writeNonCompliance(17, package_id, file_id=file_id,

line=0, function=function, comment="NPath is greater than

250")

...

Listing 3.5: An usage example of the WRITENONCOMPLIANCE function, extracted from a made up script

named cccc rules.

As previously stated in this chapter, the toolset is composed by two made up plugins, both
connected to the main tool, with the names of oclint rules.py and cccc rules.py.

oclint rules Plugin

The oclint rules is a script written in two programming languages, Perl6 and Python. This script
runs the OClint tool, which is responsible to measure the NPath metric (see Subsection 2.3), and
it also calls an external Perl script, which is responsible for obtain the MNC metric value, since
the studied automated analysis tool are not able to do it. The Perl script runs in every file and
uses regular expressions7 to find the existing functions. Within each function the script matches
any of the following statements if, while, do, for and switch. Each of the previous statements,
followed by the opening brace(’{’), marks the beginning of a nested structure and the end of that
structure is marked by the matching closing brace(’}’). The nested level is increased every time

6https://www.perl.org/
7http://perldoc.perl.org/perlre.html

38

https://www.perl.org/
http://perldoc.perl.org/perlre.html
https://www.perl.org/
http://perldoc.perl.org/perlre.html

3.2. Rule Violation Finder

a statement is found and decreased right after finding the matching closing brace, keeping stored
the highest level achieved in the function.

In some particular cases the statements can be used without the braces. In those cases the
nested level is increased to check if it surpassed the maximum nested level and decreased right
after it. The following example gives a brief demonstration of the script operation.

// Cur_Level = 0, Max_Level = 0

while (a) { // Cur_Level = 1, Max_Level = 1

if (b) { // Cur_Level = 2, Max_Level = 2

do_something();

} // Cur_Level = 1, Max_Level = 2

} // Cur_Level = 0, Max_Level = 2

while (e) { // Cur_Level = 1, Max_Level = 2

if (d) { // Cur_Level = 2, Max_Level = 2

for(int i=0;i<10;i++); // Cur_Level = 2, Max_Level = 3

} // Cur_Level = 1, Max_Level = 3

} // Cur_Level = 0, Max_Level = 3

Listing 3.6: Execution of the MNC Metric script.

The output from that script is a simple file containing the MNC metric value from the different
functions. Therefore, the file is read from the rest of the oclint rules script.

cccc rules Plugin

The cccc rules is a script written in Python. This script runs the CCCC tool, which is responsible
to measure a various number of metrics, such as: COMR, CC, CBO, NOC, WMC, DIT and
NOM.

3.2.2. Visualizing the Violated Rules

The visualization of the violated rules is supported by the graphic component of the ROS Static
Analysis tool. As mentioned in the Section 3.2.1, the displayed rules in the graphic component
are the ones exported during the execution phase of the main tool.

This component builds a diagram with the packages and their dependencies to the other pack-
ages. The packages are represented by the nodes and its dependencies are represented by the
existing edges between nodes.

39

3.3. Data Analysis

The main tool allows the user to interact with the diagram. A few diagram interactions are
provided, such as, zooming in, zooming out, transposition and node selection. A detailed infor-
mation, of the node, is displayed when the node is selected. This information appears in the side
bar and it contains the package name, the number of rules violated in that package, the package
description and a list of dependencies. The side bar also contains two fields designed for filter-
ing. This fields gives, the user, the possibility to filter the set rules that are reported from a given
package, for one or more quality models and/or metrics. The user can access all the information
(file name, rule violated, description and more, if the information is available) related to the rules
violated in a given package and this information is displayed, as a pop-up, when the number that
appears after the “Rule violations” sentence is clicked. The pop-up also allows the user to filter
the shown information by a set of tags and the filter works in the same way as the side bar of the
diagram. For instance, the tag “ROS” filter all the violations for a set of violations to the ROS
threshold.

The operation and demonstration of the use of this graphical component is shown in the fol-
lowing section, along with the data analysis.

3.3. Data Analysis

This section is intended for presenting the information obtained through the source code analysis
of several robots. Until the current date, and as stated in Section 2.2, several robots have been
analysed, however just two of them will be presented in more detail during this section, Kobuki
and Turtlebot. Solely these robots are presented in more detail, because they were a part of the
study process, helping understand the architecture and operation of ROS. Moreover, these robots
are also used in education and as research for robotics.

The source code analysis of these robots is conducted through the use of the toolset created in
this research project. As previously mentioned in Section 2.3, the toolset is comprised by some
of the studied open source static analysis tools, in order to measure the source code and check
the compliance of the rules. The way how the metric measurement values are obtained and the
tools used in the toolset was also expressed in Section 2.3 and Table 3.1.

3.3.1. Analysis of Kobuki

Kobuki consists of 63 packages, where 7 of them are metapackages (i.e. do not contain any C++
code files). These packages contain around 1360 C++ source code files, with more than 150.000

40

3.3. Data Analysis

lines of code and has 2031 rules violated. For instance, in this particular case a violation is found
on an average of 73 lines of code.

As stated previously in Section 3.2.2, after executing the analysis on several ROS packages
the graphic component builds a diagram with all the analysed packages and their dependencies
to other packages. Figure 3.1 illustrates the diagram built from the graphic component of the
Kobuki’s packages, as well as their dependencies. On that same figure we can identify nodes
with different color gradients. The color of nodes is directly connected with the number of
violations found in the package. A package with fewer violations will display a lighter color,
than a package with many violations, which in turn will display a darker color. The displayed
packages in this figure are not filtered for any quality model in specific, so this diagram shows
all the non-compliance rules found for every quality model.

Figure 3.1.: Preview of the Kobuki’s packages and their dependencies.

The visual component also allows the user to select a certain node (i.e. package), in order to
obtain a more detailed information about it. For instance, Figure 3.2 shows the displayed side
bar, with the yocs waypoints navi package selected.

For instance, after clicking on the number that is shown on the side bar of Figure 3.2 (i.e.
number 6) that appears right after the “Rule violations” sentence a pop-up will be displayed with
all the rules violated for the selected package. Figure 3.3 shows the displayed pop-up, containing
the number of violations for the ROS quality model.

Table 3.2 presents the total number of rules violated, as well as the number of rules violated
per quality model (NASA SATC, HIS, UNAK, KTH, ROS) for a set of Kobuki’s packages.

According to this table, we can assume that the volume of the code is connected with the
number of violations found. Thus, a package that contains a large volume of lines of code have
a higher probability of presenting more violations, than a package with a lower volume of code.

41

3.3. Data Analysis

Figure 3.2.: Side bar with the information of the selected package, yocs waypoints navi (blue box).

Figure 3.3.: Rule violations pop-up with one active filter tag, ros.

For instance, if we analyse the packages shown in Table 3.2, we can conclude that, in general,
the quality models that report more violations are those with higher requirements, such as NASA
SATC. This quality model have reported 117 violations, while a less restrictive quality model,
like ROS, have reported 26 violations.

42

3.3. Data Analysis

Table 3.2.: Number of lines of code, rules violated in total and per quality model for a set of Kobuki’s
packages.

Package
Source
Lines

of Code

Total of
Non-Compliance

Rules

Violations per Quality Model

NASA HIS UNAK KTH ROS

kobuki driver 3314 75 53 9 31 3 6
kobuki ftdi 836 35 20 8 11 4 4
kobuki node 1248 21 17 4 5 0 7
kobuki dock drive 543 11 6 1 5 0 0
kobuki random walker 390 9 5 3 1 3 4
kobuki auto docking 506 6 4 0 2 0 2
kobuki bumper2pc 122 5 4 1 1 0 1
kobuki controller tutorial 109 5 3 0 2 0 1
kobuki keyop 389 5 3 0 2 0 1
kobuki safety controller 289 4 2 0 2 0 0

3.3.2. Analysis of Turtlebot

Turtlebot consists of 17 packages, where 3 of them are metapackages. These packages contain
around 101 C++ source code files, with more than 15.000 lines of code and has 154 rules vio-
lated. For instance, in this particular case a violation is found on an average of 97 lines of code.
Figure 3.4, just like Figure 3.1, illustrates the diagram built from the graphical component, but
this time for the Turtlebot’s packages, as well as their dependencies.

Figure 3.4.: Preview of the Turtlebot’s packages and their dependencies.

Table 3.3 presents the total number of rules violated, as well as the number of rules violated
per quality model for a set of Turtlebot’s packages.

43

3.3. Data Analysis

Table 3.3.: Number of lines of code, rules violated in total and per quality model for a set of Turtlebot’s
packages.

Package
Lines of
Source
Code

Total of
Non-Compliance

Rules

Violations per Quality Model

NASA HIS UNAK KTH ROS

turtlebot arm ikfast plugin 5377 16 11 7 2 4 7
turtlebot arm block manipulation 1076 15 12 3 0 3 9
turtlebot actions 420 10 12 6 1 0 5
turtlebot panorama 442 8 5 1 2 1 2
turtlebot arm kinect calibration 411 8 6 1 3 0 4
turtlebot follower 204 3 3 1 0 0 1
turtlebot teleop 71 3 2 0 1 0 1
turtlebot navigation 63 3 2 0 1 0 1

For instance, if we analyse the packages shown in previous table (Table 3.3), we can conclude,
just like we did from the Table 3.2 analysis, that, in general, the quality models that report
more violations are those with higher requirements, such as NASA SATC. This quality model
have reported 53 violations, while a less restrictive quality model, like ROS, have reported 30
violations.

3.3.3. Analysis of Other Robots

Besides these two, other robots were studied and analyzed, such as, abb, cob, grizzly, husky, mo-

toman, nao, pr2, shadow and universal. These robots together consist of 225 packages. These
packages contain more than 257.532 lines of code and have a total of 4.234 rules violated. Ta-
ble 3.4 presents the total number of rules violated, lines of source code.

Appendix D presents, in its entirety, all the robot’s packages, as well as the rules violated by
each one of them.

As previously stated, the number of violations found in a package is directly dependent on
the chosen quality model. For instance, if we choose a package, such as Kobuki driver, and
a more restrictive quality model (e.g. 53 violations are found for the threshold proposed by
NASA SATC) the number of violations will be strictly greater than a quality model with low a
restriction level (e.g. 3 violations are found for the threshold proposed by KTH). After analysing
all the robots it is possible to state that the most violations are found in the NASA SATC quality
model (see Table 3.2 and 3.3), and the rule that is violated more often, in all the analysed robots,
is the Maximum lines of comments: 30% with an average of 32.3%, according to the other rules

44

3.3. Data Analysis

Table 3.4.: Number of lines of code, packages, rule violations and the percentage of violations per line of
code for all the other analysed robots.

Robot
Lines of
Source
Code

Number of
Packages

Non-Compliance
Rules

Violations per
Line of Code (%)

Cob 105322 67 1264 1.20%
Shadow 46211 50 1008 2.18%
Pr2 55461 66 974 1.76%
Nao 20818 8 545 2.62%
Abb 10135 7 167 1.65%
Motoman 12606 7 157 1.25%
Husky 4078 8 59 1.45%
Grizzly 1495 10 44 2.94%
Universal 1406 3 16 1.14%

presented in Table 3.5.

45

3.3. Data Analysis

Table 3.5.: Number and percentage of each violated rule.

Rule
Rule Violations

Numerical Percentage (%)

Minimum available methods per class: 1 0 0
Maximum available methods per class: 20 21 0.3
Maximum executable lines: 50 0 0
Maximum executable lines: 70 0 0
Maximum immediate children: 10 2 0.03
Minimum weighted methods per class: 1 0 0
Maximum weighted methods per class: 50 7 0.1
Maximum weighted methods per class: 100 4 0.06
Maximum coupling between objects: 5 576 8.9
Minimum lines of comments: 20% 744 11.6
Maximum lines of comments: 30% 2094 32.6
Maximum lines of comments: 40% 1883 29.3
Maximum function calls: 7 0 0
Maximum function calls: 10 0 0
Maximum nesting of control structures: 4 0 0
Maximum nesting of control structures: 5 0 0
Deepest level of inheritance: 5 0 0
Maximum cyclomatic complexity: 10 749 11.6
Maximum cyclomatic complexity: 15 333 5.1
Maximum estimated static paths: 80 0 0
Maximum estimated static paths: 200 0 0
Maximum estimated static paths: 250 0 0

46

4. Conclusion

Robotics has been an area with a growing evolution, and nowadays the robots are capable of
performing more arduous and complex tasks. This growth has become especially notorious
since a major part of the robotic code became public, allowing new people to study and develop
software to robotics. However, not all the developed robotic source code is public, because some
institutions have the entire interest of keeping their developed code private. But, remarkably,
nowadays there are more and more communities that are attached to open source middleware
frameworks used to develop robotic software. An example of this is the Robotic Operating
System, a growing open source middleware framework that counts with the support of a big and
active community. ROS also has a policy of keeping all the developed code public, and this
provides a unique opportunity to study a large body of robotic software.

The increasing growth in the area of robotics, as well as the increasing use of robots in per-
forming increasingly complex and dangerous tasks, turns the software safety and reliability a real
concern. Thus, it is then necessary to ensure that the software used in the robots is rated with high
quality. Unfortunately, the existing middleware frameworks for robotics do not offer any kind of
system to assess the quality of the developed software. Therefore, this research project offers a
system which enables the assessment of ROS projects, according to a set of quality metrics and
rules. This final chapter is dedicated to some conclusions about the work done, as well as, one
possible improvements to the implemented system and future work.

In Chapter 2, we explore the concept of quality in software engineering, as well as the im-
portance that the code quality has in the development of software for robots. Although, we
can analyse the internal quality, external quality and quality in use of a software product in this
research project we focus on the internal quality, because it is easier to measure the internal at-
tributes of the code rather than measuring the other attributes related to the external quality or
quality in use. Both internal and external quality are composed by a set of characteristics, but to
gauge something about the quality of the software it is necessary to focus on a more particular
characteristic of the internal quality, the maintainability. The study of maintainability, in turn, is
accomplished by measuring a series of internal quality metrics.

47

Software industry uses metrics with the objective of verifying the efficiency, progress, quality
and performance of the software. They also provide information about the software status, which
is helpful to obtain an objective assessment of the software. Currently, there are a few different
types of quality metrics, however the quality metrics of interest for this project are the ones
proposed by the ROS quality model, since it is the targeted system of study in this project. These
metrics can be seen on Table 2.1, Section 2.1.2. Although there is already a quality model for
the ROS, this was not only used and study in this project, because it was created from others four
quality models with different requirement levels and thresholds. Therefore, the threshold values
proposed for ROS should be used as a guideline until the ROS community reaches an agreement
for a “official” threshold. In this regard, the quality models proposed by NASA SATC, HIS,
UNAK and KTH are also studied and used to measure quality metrics.

With the study of various quality models and quality metrics, it became pertinent the creation
of a system to measure the quality of ROS systems. In turn, this system would be implemented
in another static analysis tool, thereby another study was conducted but this time on a set of tools
of open source and commercial static analysis tools, with the interest of finding one that could
be upgraded through the inclusion of plugins. Remarkably, a open-source tool that is already
tailored for ROS was found, the ROS Static Analysis Tool. This is a flexible and extendable
tool to gauge the code quality of ROS projects, more specifically for coding standards. Apart
from ROS Static Analysis tool, other tools were studied with the ability to analyse the source
code, allowing the collection and measurement of the highest number of metrics of interest for
this project. Apart from the ROS Static Analysis Tool, other tools were studied with the ability
to analyse the source code, allowing the collection and measurement of the highest number of
metrics of interest. From all the other studied tools only two of them were chosen, namely the
CCCC and OClint, because they are the ones that best fit the needs of the project. These tools
were encapsulated as plugins and they are a part of a toolset, which is, in turn, incorporated into
the ROS Static Analysis tool.

The discussion about the choice of these tools, as well as the presentation of the architecture
and functioning of the toolset that is, in turn, introduced in ROS Static Analysis Tool was car-
ried out on Chapter 3. In that same chapter, it was presented in greater detail the ROS Static
Analysis Tool, emphasizing its architecture, functioning and the visual component. Providing
the necessary information for the creation and integration of new plugins in the tool. The toolset,
named Rule Violation Finder, is an example of a developed plugin which was incorporated in the
tool. The Rule Violation Finder is then used to evaluate and measure the code quality of multiple
robots, which are part of the ROS corpus. The non-compliance rules (i.e. metrics marked with

48

4.1. Future Work

a threshold value) found after each robot analysis can be visualized, through the graphic compo-
nent of the ROS Static Analysis tool. The tool also offer a tagging system, allowing us to filter
the displayed violated rules for a set of quality models and/or metric types. This tool, already
incorporated with the toolset, is available on GitHub1.

Finally, and still in this chapter, a data analysis was conducted where the developed system
has been used to obtain the metric measurements of several robots, such as: Abb, Cob, Grizzly,
Husky, Kobuki, Motoman, Nao, Pr2, Shadow, Turtlebot and Universal. With the aid of the
graphic component, it was possible to retrieve the analysis results from each robot, and these
results can be found on Section 3.3 and Appendix D.

4.1. Future Work

Given the low time frame of the current project and the lack of open source static analysis tools, as
stated before, it was not possible to measure all the quality metrics proposed by ROS. Thus, one
of the opportunities for future work would be the improvement of the metric measurement system
(i.e. Violation Rule Finder), through the addition of new tools encapsulated as plugins, providing
the measurement of the missing metrics, or even others if necessary. Another opportunity, also
related to the toolset, would go through the improvement of the existing plugins, in order to turn
the measurement of the metrics more efficient.

As mentioned previously, the ROS quality model was created from the other four studied
quality models (NASA SATC, HIS, UNAK, KTH), and its threshold values should be used as
guidelines. Thereby, study whether the proposed quality model currently is tailored for ROS,
and propose changes if necessary, may also be considered an opportunity for future work.

Through the analysis conducted to multiple robots (see Section 3.3) it was possible to detect
the existence of some errors. However, the results obtained do not allow us to take any concrete
information about the quality of the robotic software. In this regard, it would be interesting to:

• Study concretely the impact that the violated rules cause to robots;

• Study ways to reduce the violations found in robotic software. One possible solution would
be to introduce better programming practices on the robotic communities.

This would entail a more thorough study of the source code implemented in the robots in ques-
tion.

1https://github.com/git-afsantos/haros

49

https://github.com/git-afsantos/haros
https://github.com/git-afsantos/haros

4.1. Future Work

One last opportunity for future work would be to assess an even larger set of robots or ROS
projects, in order to classify in full, the quality of the ROS corpus.

In summary, this research project presents reasons which demonstrate the importance of build-
ing robots with high quality software, as well as the methods to assess it. This project also deliv-
ers an overview of the ROS framework and a review of the available open source static analysis
tools for C++ source code. The C++ language is one of the main libraries of ROS, as well as the
language of interest for this project. Nowadays, there are plenty of open source tools capable of
performing a static analysis to C ++ source code, however many of these tools are not automable
neither capable of measuring all the required metrics, and some of them are quite similar since
they measure the same type of quality metrics. The importance of ensuring that robots are pro-
grammed with high quality software served as motivation in the development of this project.
Thus, it was created a system, in a form of a plugin to an existing tool already tailored for ROS,
capable of assessing the quality of robots developed from ROS. The assessement of these robots
is consider a case study, and both, the developed system and the case study can be seen as a
contribution to the ROS community.

Finally, we present several opportunities for future work, which includes the improvement of
the toolset developed in this project, modification the ROS quality model, study a way to reduce
the number of existent violations, as well as the impact that it has on robots, and assessing the
quality of other ROS projects. With this project we intend to highlight the importance of code
quality in building high quality software, as well as the growing need to measure and improving
it, especially for the software developed from ROS.

50

Bibliography

Technical report.

Jerzy A. Barchanski. Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi

Robot Motion Planning and Operator Training. InTech, 2011. ISBN 978-953-307-842-7.

N. Bevan and M. Azuma. Quality in Use: Incorporating Human Factors into the Software En-
gineering Lifecycle. pages 169+. IEEE Computer Society, 1997. ISBN 0-8186-7837-2. URL
http://portal.acm.org/citation.cfm?id=854938.

Andrew Binstock. Integration watch: Using metrics effectively, 2010. URL http:

//sdtimes.com/integration-watch-using-metrics-effectively/. Ac-
cessed: 2015-03-23.

Andy Brooks. Metrics overview, 2008. URL http://staff.unak.is/andy/

StaticAnalysis0809/metrics/overview.html. Accessed: 2015-01-17.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans.

Softw. Eng., 20(6):476–493, June 1994. ISSN 0098-5589. doi: 10.1109/32.295895. URL
http://dx.doi.org/10.1109/32.295895.

Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite for object oriented design.
SIGPLAN Not., 26(11):197–211, November 1991. ISSN 0362-1340. doi: 10.1145/118014.
117970. URL http://doi.acm.org/10.1145/118014.117970.

Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate software
system maintainability. Computer, 27(8):44–49, August 1994. ISSN 0018-9162. doi: 10.
1109/2.303623. URL http://dx.doi.org/10.1109/2.303623.

Ken Conley. Nodes, 2012. URL http://wiki.ros.org/Nodes. Accessed: 2015-03-02.

51

http://portal.acm.org/citation.cfm?id=854938
http://sdtimes.com/integration-watch-using-metrics-effectively/
http://sdtimes.com/integration-watch-using-metrics-effectively/
http://staff.unak.is/andy/StaticAnalysis0809/metrics/overview.html
http://staff.unak.is/andy/StaticAnalysis0809/metrics/overview.html
http://dx.doi.org/10.1109/32.295895
http://doi.acm.org/10.1145/118014.117970
http://dx.doi.org/10.1109/2.303623
http://wiki.ros.org/Nodes

Bibliography

Richard Torkar Aleš Zǐvkovič Danijel Radjenović, Marjan Heričk. Information and software
technology, 2013. URL http://romisatriawahono.net/lecture/rm/survey/

software%20engineering/Software%20Fault%20Defect%20Prediction/

Radjenovic%20-%20Software%20fault%20prediction%20metrics%20-%

202013.pdf. Accessed 2015-02-20.

Ayssam Elkady and Tarek Sobh. Robotics Middleware: A Comprehensive Literature Survey
and Attribute-Based Bibliography. Journal of Robotics, 2012:15, 2012. URL http://

downloads.hindawi.com/journals/jr/2012/959013.pdf.

David A. Garvin. Managing quality. Free Press [u.a.], New York, NY, 1988. ISBN
0029113806. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&

IKT=1016&TRM=ppn+025783971&sourceid=fbw_bibsonomy.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintain-
ability. In Proceedings of the 6th International Conference on Quality of Information and

Communications Technology, QUATIC ’07, pages 30–39, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2948-8. doi: 10.1109/QUATIC.2007.7. URL
http://dx.doi.org/10.1109/QUATIC.2007.7.

IEEE. IEEE Standard Glossary of Software Engineering Terminology. Technical report, IEEE,
1990. URL http://dx.doi.org/10.1109/ieeestd.1990.101064.

ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.

J. M. Juran. Juran’s Quality Control Handbook. Mcgraw-Hill (Tx), 4th edition, 1974.
ISBN 0070331766. URL http://www.amazon.com/exec/obidos/redirect?

tag=citeulike07-20&path=ASIN/0070331766.

Barbara Kitchenham and Shari L. Pfleeger. Software quality: The elusive target. IEEE Softw.,
13(1):12–21, January 1996. ISSN 0740-7459. doi: 10.1109/52.476281. URL http://dx.

doi.org/10.1109/52.476281.

Adam Kolawa. When, why, and how: Code analysis, 2010. URL http://www.

codeproject.com/Articles/28440/When-Why-and-How-Code-Analysis.
Accessed: 2015-05-05.

Armin Krusko. Complexity Analysis of Real Time Software – Using Software Complexity Met-
rics to Improve the Quality of Real Time Software. Master’s thesis, KTH Royal Institute

52

http://romisatriawahono.net/lecture/rm/survey/software%20engineering/Software%20Fault%20Defect%20Prediction/Radjenovic%20-%20Software%20fault%20prediction%20metrics%20-%202013.pdf
http://romisatriawahono.net/lecture/rm/survey/software%20engineering/Software%20Fault%20Defect%20Prediction/Radjenovic%20-%20Software%20fault%20prediction%20metrics%20-%202013.pdf
http://romisatriawahono.net/lecture/rm/survey/software%20engineering/Software%20Fault%20Defect%20Prediction/Radjenovic%20-%20Software%20fault%20prediction%20metrics%20-%202013.pdf
http://romisatriawahono.net/lecture/rm/survey/software%20engineering/Software%20Fault%20Defect%20Prediction/Radjenovic%20-%20Software%20fault%20prediction%20metrics%20-%202013.pdf
http://downloads.hindawi.com/journals/jr/2012/959013.pdf
http://downloads.hindawi.com/journals/jr/2012/959013.pdf
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+025783971&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+025783971&sourceid=fbw_bibsonomy
http://dx.doi.org/10.1109/QUATIC.2007.7
http://dx.doi.org/10.1109/ieeestd.1990.101064
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0070331766
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0070331766
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.1109/52.476281
http://www.codeproject.com/Articles/28440/When-Why-and-How-Code-Analysis
http://www.codeproject.com/Articles/28440/When-Why-and-How-Code-Analysis

Bibliography

of Technology, 2004. URL https://www.nada.kth.se/utbildning/grukth/

exjobb/rapportlistor/2004/rapporter04/krusko_armin_04032.pdf.

Helmar Kuder. HIS Source Code Metrics. HIS Source Code Metrics, page 8, 2008.

Johannes Kuehn. code quality, 2013. URL http://wiki.ros.org/code_quality.
Accessed: 2015-01-17.

Thomas J. McCabe. A complexity measure. In Proceedings of the 2Nd International Confer-

ence on Software Engineering, ICSE ’76, pages 407–, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press. URL http://dl.acm.org/citation.cfm?id=800253.

807712.

Microsoft. Code Metrics Values, 2015. URL https://msdn.microsoft.com/en-us/

library/bb385914.aspx. Accessed: 2015-06-15.

NASA. SOFTWARE ASSURANCE GUIDEBOOK, NASA-GB-A201. NASA, 1989. URL http:

//www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a301.pdf.

Brian A. Nejmeh. Npath: A measure of execution path complexity and its applications. Commun.

ACM, 31(2):188–200, 1988. doi: 10.1145/42372.42379. URL http://doi.acm.org/

10.1145/42372.42379.

Paul Omar and J. Hagemeister. Metrics for assessing a software system’s maintainability. IEEE,
pages 337–344, 1992.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In ICRA Work-

shop on Open Source Software, 2009.

Ryuichi Saito. Oclint, n.d. URL http://oclint.org/. Accessed: 2015-07-01.

André Santos. Applying Coding Standards to the Robot Operating System. Master’s thesis,
University of Minho, 2015.

W. A. Shewart. Economic control of Quality of Manufactured Product. Van Nostrand Reinhold
Co., New York, 1931.

Software Assurance Technology Center. Software Metrics Research and Develop-
ment, 2000a. URL http://web.archive.org/web/20000303021415/http://

satc.gsfc.nasa.gov/metrics/index.html. Accessed: 2015-01-17.

53

https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/krusko_armin_04032.pdf
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/krusko_armin_04032.pdf
http://wiki.ros.org/code_quality
http://dl.acm.org/citation.cfm?id=800253.807712
http://dl.acm.org/citation.cfm?id=800253.807712
https://msdn.microsoft.com/en-us/library/bb385914.aspx
https://msdn.microsoft.com/en-us/library/bb385914.aspx
http://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a301.pdf
http://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a301.pdf
http://doi.acm.org/10.1145/42372.42379
http://doi.acm.org/10.1145/42372.42379
http://oclint.org/
http://web.archive.org/web/20000303021415/http://satc.gsfc.nasa.gov/metrics/index.html
http://web.archive.org/web/20000303021415/http://satc.gsfc.nasa.gov/metrics/index.html

Bibliography

Software Assurance Technology Center. SATC Historical OO Metrics Database,
2000b. URL http://web.archive.org/web/20080916010911/http://

satc.gsfc.nasa.gov/metrics/codemetrics/index.html. Accessed: 2015-
01-17.

Dirk Thomas. ROS distribution files, 2013. URL http://www.ros.org/reps/

rep-0141.html. Accessed: 2015-08-01.

Dirk Thomas. ROS Introduction, 2014. URL http://wiki.ros.org/ROS/

Introduction. Accessed: 2015-02-25.

Dirk Thomas Tully Foote and Paul Mathieu. ROS distribution files, 2013. URL http://www.

ros.org/reps/rep-0137.html. Accessed: 2015-08-01.

Joost Visser. SIG/TUViT Evaluation Criteria Trusted Product Maintainability: Guidance for
producers - Version 6.1. SIG/TUViT Evaluation Criteria Trusted Product Maintainability:

Guidance for producers, page 8, 2014.

Sarah Vonnegut. Open Source vs. Commercial Tools: Static Code Analysis
Showdown, 2015. URL https://www.checkmarx.com/2015/03/17/

open-source-vs-commercial-tools-static-code-analysis-showdown-2/.
Accessed: 2015-07-26.

Stefan Wagner. Software Product Quality Control. Springer, 2013. ISBN 978-3-642-
38570-4. doi: 10.1007/978-3-642-38571-1. URL http://dx.doi.org/10.1007/

978-3-642-38571-1.

David A. Wheeler. More than a gigabuck: Estimating gnu/linux’s size. 2001. URL http:

//www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

54

http://web.archive.org/web/20080916010911/http://satc.gsfc.nasa.gov/metrics/codemetrics/index.html
http://web.archive.org/web/20080916010911/http://satc.gsfc.nasa.gov/metrics/codemetrics/index.html
http://www.ros.org/reps/rep-0141.html
http://www.ros.org/reps/rep-0141.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
http://www.ros.org/reps/rep-0137.html
http://www.ros.org/reps/rep-0137.html
https://www.checkmarx.com/2015/03/17/open-source-vs-commercial-tools-static-code-analysis-showdown-2/
https://www.checkmarx.com/2015/03/17/open-source-vs-commercial-tools-static-code-analysis-showdown-2/
http://dx.doi.org/10.1007/978-3-642-38571-1
http://dx.doi.org/10.1007/978-3-642-38571-1
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

A. Internal Quality Metrics

A.1. Quality Models

A.1.1. NASA SATC

Table A.1.: NASA SATC File-metrics
Comment to code ratio
MIN MAX
0.2 0.3

Table A.2.: NASA SATC Function-metrics

Cyclomatic
complexity

Number
of

executable
lines

Number of
function

calls

Maximum
nesting of

control
structures

Estimated
static path

count

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1 10 1 50 − − − − − −

Table A.3.: NASA SATC Class-metrics
Coupling
between
objects

Number of
immediate
children

Weighted
methods
per class

Deepest
level of

inheritance

Number of
methods
available

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
− 5 − − − 100 − 5 1 20

55

A.1. Quality Models

A.1.2. ROS

Table A.4.: ROS File-metrics
Comment to code ratio
MIN MAX
0.2 −

Table A.5.: ROS Function-metrics

Cyclomatic
complexity

Number
of

executable
lines

Number of
function

calls

Maximum
nesting of

control
structures

Estimated
static path

count

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1 15 1 70 1 10 − 5 1 250

Table A.6.: ROS Class-metrics
Coupling
between
objects

Number of
immediate
children

Weighted
methods
per class

Deepest
level of

inheritance

Number of
methods
available

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
0 5 0 10 1 100 − 5 1 20

A.1.3. KTH

Table A.7.: KTH Function-metrics

Cyclomatic
complexity

Number
of

executable
lines

Number of
function

calls

Maximum
nesting of

control
structures

Estimated
static path

count

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1 15 1 70 1 10 − 5 1 250

56

A.1. Quality Models

A.1.4. HIS

Table A.8.: HIS File-metrics
Comment to code ratio
MIN MAX
0.2 −

Table A.9.: HIS Function-metrics

Cyclomatic
complexity

Number
of

executable
lines

Number of
function

calls

Maximum
nesting of

control
structures

Estimated
static path

count

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
1 10 1 50 1 7 − 4 1 80

A.1.5. UNAK

Table A.10.: University of Akureyri in Iceland File-metrics
Comment to code ratio
MIN MAX
0.2 0.4

Table A.11.: University of Akureyri in Iceland Class-metrics
Coupling
between
objects

Number of
immediate
children

Weighted
methods
per class

Deepest
level of

inheritance

Number of
methods
available

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
− − − 10 1 50 − 5 − −

57

A.2. NPath Expressions

A.1.6. SIG

Table A.12.: SIG’s metric values (1 of 2)

Volume
Complexity

per unit
Duplication

Unit
size

Unit
interfacing

4 ? 229,000 LOC >5 CC (<25.4%) <4.4% >20 LOC (<35.6%) ≥3(<14.2%)
>10 CC (<9.6%) >50 LOC (<9.7%) ≥5(<2.7%)
>25 CC (<1.1%) >100 LOC (<2.2%) ≥7(<0.7%)

Table A.13.: SIG’s metric values (2 of 2)
Module
coupling

Component
balance

Component
independence

4 ? >10 Dependencies (<23.1%) # of components ∼9 % code in modules
>20 Dependencies (<14.8%) Gini coefficient <0.35 with dependence
>50 Dependencies (<7.2%) <14.3%

A.2. NPath Expressions

Table A.14.: NPath Expressions - (Nejmeh, 1988)
Structure Expression
if NPATH(expr) + NPATH(statements in then) + NPATH(statements in else) + 1
while NPATH(expr) + NPATH(statements in while) + 1
do while NPATH(expr) + NPATH(statements in do) + 1
for NPATH(expr1) + NPATH(expr2) + NPATH(expr3) + NPATH(statements in for) + 1

switch NPATH(expr) +
n∑

i=1

(NPATH(statements in casei)), where n = # cases + 1(default)

Expressions Number of && and || in expression
Other statements 1

Functions
n∏

i=1

NPATH(statement i)

58

B. Declared Rules

%YAML 1.1

Rules file.

-

id: 1

name: MIN_COM_RATIO

scope: file

description: "Minimum lines of comments: 20%"

tags:

- metrics

- nasa-satc

- his

- uai

- ros

- comments

- comment-ratio

-

id: 2

name: MAX_COM_RATIO

scope: file

description: "Maximum lines of comments: 30%"

tags:

- metrics

- nasa-satc

- comments

- comment-ratio

-

id: 3

name: MAX_COM_RATIO

scope: file

description: "Maximum lines of comments: 40%"

tags:

- metrics

59

- uai

- comments

- comment-ratio

-

id: 5

name: MAX_CC

scope: function

description: "Maximum cyclomatic complexity: 10"

tags:

- metrics

- nasa-satc

- his

- hicpp

- cyclomatic-complexity

-

id: 6

name: MAX_CC

scope: function

description: "Maximum cyclomatic complexity: 15"

tags:

- metrics

- kth

- ros

- cyclomatic-complexity

-

id: 8

name: MAX_EXE_LINES

scope: function

description: "Maximum executable lines: 50"

tags:

- metrics

- nasa-satc

- his

- executable-lines

-

id: 9

name: MAX_EXE_LINES

scope: function

description: "Maximum executable lines: 70"

tags:

- metrics

60

- kth

- ros

- executable-lines

-

id: 11

name: MAX_FUN_CALLS

scope: function

description: "Maximum function calls: 7"

tags:

- metrics

- his

- function-calls

-

id: 12

name: MAX_FUN_CALLS

scope: function

description: "Maximum function calls: 10"

tags:

- metrics

- kth

- ros

- function-calls

-

id: 13

name: MAX_NEST_CONTROL

scope: function

description: "Maximum nesting of control structures: 4"

tags:

- metrics

- his

- nesting-control

-

id: 14

name: MAX_NEST_CONTROL

scope: function

description: "Maximum nesting of control structures: 5"

tags:

- metrics

- kth

- ros

- nesting-control

61

-

id: 16

name: MAX_STATIC_PATH

scope: function

description: "Maximum estimated static paths: 80"

tags:

- metrics

- his

- static-path

-

id: 17

name: MAX_STATIC_PATH

scope: function

description: "Maximum estimated static paths: 250"

tags:

- metrics

- kth

- ros

- static-path

-

id: 18

name: MAX_COUPLING

scope: class

description: "Maximum coupling between objects: 5"

tags:

- metrics

- nasa-satc

- ros

- coupling

-

id: 19

name: MAX_CHILDREN

scope: class

description: "Maximum immediate children: 10"

tags:

- metrics

- uai

- ros

- immediate-children

-

id: 20

62

name: MIN_WEIGHT_METHODS

scope: class

description: "Minimum weighted methods per class: 1"

tags:

- metrics

- uai

- ros

- weighted-methods

-

id: 21

name: MAX_WEIGHT_METHODS

scope: class

description: "Maximum weighted methods per class: 50"

tags:

- metrics

- uai

- weighted-methods

-

id: 22

name: MAX_WEIGHT_METHODS

scope: class

description: "Maximum weighted methods per class: 100"

tags:

- metrics

- nasa-satc

- ros

- weighted-methods

-

id: 23

name: MAX_INHERIT_LEVEL

scope: class

description: "Deepest level of inheritance: 5"

tags:

- metrics

- nasa-satc

- uai

- ros

- inheritance-level

-

id: 24

name: MIN_AVAILABLE_METHODS

63

scope: class

description: "Minimum available methods per class: 1"

tags:

- metrics

- nasa-satc

- ros

- available-methods

-

id: 25

name: MAX_AVAILABLE_METHODS

scope: class

description: "Maximum available methods per class: 20"

tags:

- metrics

- nasa-satc

- ros

- available-methods

Listing B.1: Rule declarations for the quality models.

64

C. Tool Reports

C.1. CCCC Tool Report

<!-- Detailed report on module Rb2Vw -->

<CCCC_Project>

<module_summary>

<lines_of_code value="87" level="0"/>

<lines_of_code_per_member_function value="******" level="0"/>

<McCabes_cyclomatic_complexity value="13" level="0"/>

<McCabes_cyclomatic_complexity_per_member_function value="******" level="2

"/>

<lines_of_code value="1" level="0"/>

<lines_of_code_per_member_function value="********" level="2"/>

<lines_of_code_per_line_of_comment value="87.000" level="2"/>

<McCabes_cyclomatic_complexity_per_line_of_comment value="13.000" level="2

"/>

<weighted_methods_per_class_unity value="5" level="0"/>

<weighted_methods_per_class_visibility value="5" level="0"/>

<depth_of_inheritance_tree value="0" level="0"/>

<number_of_children value="0" level="0"/>

<coupling_between_objects value="0" level="0"/>

<IF4 value="0" level="0"/>

<IF4_per_member_function value="********" level="0"/>

<IF4_visible value="0" level="0"/>

<IF4_visible_per_member_function value="********" level="0"/>

<IF4_concrete value="0" level="0"/>

<IF4_concrete_per_member_function value="********" level="0"/>

</module_summary>

<module_detail>

<description>definition</description>

<source_reference file="/home/miguel/ros/repos/kobuki_core/kobuki_driver/

src/test/velocity_commands.cpp" line="38"/>

<lines_of_code value="5" level="0"/>

65

C.2. OClint Tool Report

<McCabes_cyclomatic_complexity value="0" level="0"/>

<lines_of_comment value="0" level="0"/>

<lines_of_code_per_line_of_comment value="------" level="0"/>

<McCabes_cyclomatic_complexity_per_line_of_comment value="------" level="0

"/>

</module_detail>

...

<CCCC_Project>

Listing C.1: Example of a XML report extracted from CCCC.

C.2. OClint Tool Report

<oclint version="0.8.1" url="http://oclint.org">

<datetime>2015-07-18T20:15:56Z</datetime>

<summary>

<property name="number of files">1</property>

<property name="files with violations">1</property>

<property name="number of priority 1 violations">0</property>

<property name="number of priority 2 violations">8</property>

<property name="number of priority 3 violations">58</property>

</summary>

<violations>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="44" startcolumn="95" endline="

44" endcolumn="101" rule="long variable name" priority="3" message="

Variable name with 23 characters is longer than the threshold of 20"/

>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="83" startcolumn="61" endline="

83" endcolumn="76" rule="long variable name" priority="3" message="

Variable name with 21 characters is longer than the threshold of 20"/

>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="170" startcolumn="3" endline="

170" endcolumn="10" rule="long variable name" priority="3" message="

Variable name with 25 characters is longer than the threshold of 20"/

>

66

C.2. OClint Tool Report

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="171" startcolumn="3" endline="

171" endcolumn="10" rule="long variable name" priority="3" message="

Variable name with 26 characters is longer than the threshold of 20"/

>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="20" startcolumn="1" endline="

36" endcolumn="1" rule="high npath complexity" priority="2" message="

NPath Complexity Number 12 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="42" startcolumn="5" endline="

42" endcolumn="89" rule="high npath complexity" priority="2" message=

"NPath Complexity Number 1 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="44" startcolumn="5" endline="

53" endcolumn="5" rule="high npath complexity" priority="2" message="

NPath Complexity Number 2 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="55" startcolumn="5" endline="

81" endcolumn="5" rule="high npath complexity" priority="2" message="

NPath Complexity Number 5 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="83" startcolumn="5" endline="

87" endcolumn="5" rule="high npath complexity" priority="2" message="

NPath Complexity Number 1 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="89" startcolumn="5" endline="

133" endcolumn="5" rule="high npath complexity" priority="2" message=

"NPath Complexity Number 21 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="137" startcolumn="1" endline="

224" endcolumn="1" rule="high npath complexity" priority="2" message=

"NPath Complexity Number 49 exceeds limit of 0"/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="137" startcolumn="10" endline=

"137" endcolumn="14" rule="unused method parameter" priority="3"

message="The parameter ’argc’ is unused."/>

<violation path="/home/miguel/ros/repos/kobuki_core/kobuki_driver/src/

test/velocity_commands.cpp" startline="137" startcolumn="20" endline=

"137" endcolumn="27" rule="unused method parameter" priority="3"

message="The parameter ’argv’ is unused."/>

67

C.2. OClint Tool Report

...

</violations>

</oclint>

Listing C.2: Example of a XML report extracted from OClint.

68

D. Data Analysis

D.1. Turtlebot Package Analysis

Table D.1.: Number of rule violations found on Turtlebot’s packages.

Turtlebot

Package Non-Compliance
Rules

Package Non-Compliance
Rules

pano core 71 turtlebot follower 3
pano py 17 turtlebot teleop 3
turtlebot arm ikfast plugin 16 turtlebot navigation 3
turtlebot arm block manipulation 15 pano ros 0
turtlebot actions 10 turtlebot arm moveit demos 0
turtlebot panorama 8 turtlebot bringup 0
turtlebot arm kinect calibration 8 turtlebot calibration 0

Total of 154 violations found

69

D.2. Kobuki Package Analysis

D.2. Kobuki Package Analysis

Table D.2.: Number of rule violations found on Kobuki’s packages.

Kobuki

Package Non-Compliance
Rules

Package Non-Compliance
Rules

ecl eigen 830 ecl formatters 11
ar track alvar 288 kobuki dock drive 11
ecl devices 84 ecl sigslots lite 11
kobuki driver 75 yocs ar pair tracking 9
ecl time 58 ecl linear algebra 9
ecl command line 56 ecl exceptions 9
ecl geometry 53 kobuki random walker 9
ecl threads 37 yocs waypoint provider 9
kobuki ftdi 35 ecl filesystem 8
ecl containers 34 ecl mobile robot 8
ecl streams 31 yocs diff drive pose controller 7
ecl time lite 30 yocs waypoints navi 6
ecl core apps 28 kobuki auto docking 6
ecl utilities 28 kobuki keyop 5
kobuki node 21 yocs safety controller 5
ecl config 17 yocs virtual sensor 5
ecl io 17 kobuki bumper2pc 5
ecl converters 15 kobuki controller tutorial 5
ecl math 15 yocs velocity smoother 4
ecl sigslots 15 kobuki safety controller 4
ecl concepts 15 yocs keyop 4
ecl ipc 14 yocs math toolkit 4
ecl type traits 13 ecl statistics 4
ecl mpl 12 ecl converters lite 4
yocs navigator 11 yocs joyop 2
ecl errors 11 yocs controllers 2
yocs cmd vel mux 11 kobuki testsuite 0
yocs ar marker tracking 11 yocs ar pair approach 0

yocs localization manager 0

Total of 1031 violations found

70

D.3. Abb Package Analysis

D.3. Abb Package Analysis

Table D.3.: Number of rule violations found on Abb’s packages.

Abb

Package Non-Compliance
Rules

Package Non-Compliance
Rules

simple message 103 abb irb2400 moveit plugins 16
industrial robot client 42 abb driver 6

Total of 167 violations found

D.4. Grizzly Package Analysis

Table D.4.: Number of rule violations found on Grizzly’s packages.

Grizzly

Package Non-Compliance
Rules

Package Non-Compliance
Rules

grizzly motion 28 grizzly teleop 1
roboteq driver 10 grizzly robot 0
grizzly base 3 roboteq diagnostics 0
grizzly msgs 2

Total of 44 violations found

71

D.5. Husky Package Analysis

D.5. Husky Package Analysis

Table D.5.: Number of rule violations found on Husky’s packages.

Husky

Package Non-Compliance
Rules

Package Non-Compliance
Rules

husky base 59 husky robot 0
husky control 0 ur driver 0
husky bringup 0

Total of 59 violations found

D.6. Motoman Package Analysis

Table D.6.: Number of rule violations found on Motoman’s packages.

Motoman

Package Non-Compliance
Rules

Package Non-Compliance
Rules

simple message 103 motoman 0
industrial robot client 42 motoman driver 0
industrial utils 12

Total of 157 violations found

72

D.7. Nao Package Analysis

D.7. Nao Package Analysis

Table D.7.: Number of rule violations found on Nao’s packages.

Nao

Package Non-Compliance
Rules

Package Non-Compliance
Rules

orocos kdl 325 nao path follower 6
naoqi driver 207 orocos kinematics dynamics 0
nao teleop 7 nao extras 0

Total of 545 violations found

D.8. Universal Package Analysis

Table D.8.: Number of rule violations found on Universal’s packages.

Universal

Package Non-Compliance
Rules

Package Non-Compliance
Rules

ur kinematics 16 universal robot 0
ur driver 0

Total of 16 violations found

73

D.9. Shadow Package Analysis

D.9. Shadow Package Analysis

Table D.9.: Number of rule violations found on Shadow’s packages.

Shadow

Package Non-Compliance
Rules

Package Non-Compliance
Rules

orocos kdl 325 ros ethercat loop 7
sr mechanism controllers 90 cyberglove trajectory 5
sr robot lib 78 sr ronex hardware interface 4
sr hand 67 sr ronex utilities 4
ros ethercat eml 56 sr gazebo sim 3
sr edc ethercat drivers 40 sr example 2
sr ronex drivers 39 sr ronex external protocol 2
sr self test 36 sr hardware interface 1
sr ronex transmissions 27 sr core 0
hand kinematics 25 logitech r400 0
sr tactile sensors 22 shuttle xpress 0
sr ronex controllers 22 orocos kinematics dynamics 0
sr mechanism model 20 shadow robot ethercat 0
ros ethercat hardware 19 sr edc controller configuration 0
cyberglove 19 ros ethercat 0
sr remappers 17 sr tools 0
sr movements 17 sr grasp fast planner 0
sr utilities 17 sr interface 0
kdl coupling 16 sr robot commander 0
ros ethercat model 15 sr grasp 0
sr ronex examples 13 sr ronex 0

Total of 1008 violations found

74

D.10. Pr2 Package Analysis

D.10. Pr2 Package Analysis

75

D.10. Pr2 Package Analysis

Table D.10.: Number of rule violations found on Pr2’s packages.

Pr2

Package Non-Compliance
Rules

Package Non-Compliance
Rules

orocos kdl 325 pr2 tilt laser interface 3
ethercat hardware 98 pr2 controller interface 3
pr2 mechanism controllers 61 pr2 run stop auto restart 2
pr2 mechanism model 54 pr2 gripper action 1
robot mechanism controllers 48 single joint position action 1
pr2 arm kinematics 36 pr2 computer monitor 1
pr2 navigation self filter 33 pr2 ethercat 1
pr2 gripper sensor action 29 pr2 tuckarm 0
pr2 calibration controllers 29 joint trajectory action tools 0
pr2 gripper sensor action 29 pr2 common actions 0
pr2 controller manager 27 pr2 tuck arms action 0
semantic point annotator 27 orocos kinematics dynamics 0
pr2 gripper sensor controller 26 pr2 app manager 0
pr2 teleop general 24 pr2 apps 0
pr2 power board 23 pr2 mannequin mode 0
app manager 16 pr2 position scripts 0
ethercat trigger controllers 16 pr2 move base 0
ocean battery driver 16 pr2 navigation 0
pr2 arm move ik 12 fingertip pressure 0
pr2 mechanism diagnostics 12 pr2 ethercat drivers 0
power monitor 11 pr2 gripper sensor 0
pr2 teleop 8 pr2 robot 0
joint trajectory generator 8 pr2 power drivers 0
laser tilt controller filter 6 pr2 camera synchronizer 0
pr2 hardware interface 5 pr2 delivery 0
joint trajectory action 4 pr2 kinematics 0
pr2 head action 4 pr2 mechanism 0
pr2 navigation perception 4 pr2 controllers 0

Total of 974 violations found

76

D.11. Cob Package Analysis

D.11. Cob Package Analysis

77

D.11. Cob Package Analysis

Table D.11.: Number of rule violations found on Cob’s packages.

Cob

Package Non-Compliance
Rules

Package Non-Compliance
Rules

orocos kdl 325 cob pick place action 7
schunk libm5api 112 cob linear nav 7
cob twist controller 108 cob scan unifier 6
cob light 61 cob control mode adapter 6
schunk sdh 59 cob voltage control 4
cob obstacle distance 57 cob base velocity smoother 4
schunk powercube chain 55 cob cam3d throttle 3
cob camera sensors 46 cob lookat action 3
cob sick s300 39 cob object detection visualizer 2
cob utilities 28 cob sound 2
cob cartesian controller 27 cob driver 0
cob kinematics 25 cob mimic 0
cob relayboard 25 cob command gui 0
cob canopen motor 24 cob command tools 0
cob vision utils 24 cob dashboard 0
cob phidgets 24 cob monitoring 0
cob trajectory controller 21 cob script server 0
cob undercarriage ctrl 9 cob control 0
cob generic can 17 cob grasp generation 0
cob base drive chain 17 cob manipulation 0
cob collision velocity filter 17 cob moveit interface 0
cob frame tracker 17 cob tactiletools 0
cob omni drive controller 16 cob tray monitor 0
cob image flip 12 cob navigation 0
cob interactive teleop 12 cob perception common 0
cob sick lms1xx 10 orocos kinematics dynamics 0
cob teleop 10 schunk modular robotics 0
cob head axis 9 schunk sdhx 0
cob footprint observer 7 schunk simulated tactile sensors 0
cob model identifier 7

Total of 1264 violations found

78

	Contents
	1 Introduction
	1.1 Main Goals

	2 State of the Art
	2.1 Code Quality
	2.1.1 What is Maintainability?
	2.1.2 Metrics
	2.1.3 Quality Models

	2.2 Robot Operating System
	2.3 Static Analysis Tools

	3 Contribution
	3.1 ROS Static Analysis Tool Architecture
	3.1.1 Startup Phase
	3.1.2 Execution Phase
	3.1.3 Creating Plugins to the Main Tool

	3.2 Rule Violation Finder
	3.2.1 Rule Violation Finder Architecture
	3.2.2 Visualizing the Violated Rules

	3.3 Data Analysis
	3.3.1 Analysis of Kobuki
	3.3.2 Analysis of Turtlebot
	3.3.3 Analysis of Other Robots

	4 Conclusion
	4.1 Future Work

	A Internal Quality Metrics
	A.1 Quality Models
	A.1.1 NASA SATC
	A.1.2 ROS
	A.1.3 KTH
	A.1.4 HIS
	A.1.5 UNAK
	A.1.6 SIG

	A.2 NPath Expressions

	B Declared Rules
	C Tool Reports
	C.1 CCCC Tool Report
	C.2 OClint Tool Report

	D Data Analysis
	D.1 Turtlebot Package Analysis
	D.2 Kobuki Package Analysis
	D.3 Abb Package Analysis
	D.4 Grizzly Package Analysis
	D.5 Husky Package Analysis
	D.6 Motoman Package Analysis
	D.7 Nao Package Analysis
	D.8 Universal Package Analysis
	D.9 Shadow Package Analysis
	D.10 Pr2 Package Analysis
	D.11 Cob Package Analysis

