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ABSTRACT

Using components with simple algebraic descriptions, a round function for an iterated sym-
metric cipher is constructed, that seems to have some desirable properties. Two iterations of
the round seem enough to obtain ǳfull diffusionǴ, in the sense of having even one input bit
change to affect on average half of the output bits. Furthermore the round also appears to
have very high resistance against differential cryptanalysis.

That is the core result. In addition to that, a review of the state of the art is conducted,
justifying why ciphers with simple algebraic descriptions are an area of research worth pur-
suing. Also, the components used in the round construction are of two separate kinds: linear
and nonlinear. Each of those kinds is analysed in a dedicated chapter, exploring the proper-
ties that justify the way those components are used in the round function.
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RESUMO

É descrita a construção de uma função de round, para uma cifra simétrica iterativa, utilizando
componentes com uma descrição algébrica simples. Esta função tem propriedades que são
desejáveis, nomeadamente iterá-la duas vezes parece ser suficiente para obter ǳdifusão com-
pletaǴ, neste sentido: mudar um bit no input, faz com que em média, mudem metade dos bits
do output. Para além disto, a função aparenta ter uma muita alta resistência à criptanálise
diferencial.

Esse é o resultado central. Adicionalmente, é também analisado o estado da arte, para jus-
tificar o porquê de cifras com descrições algébricas simples ser uma área de investigação
com interesse. Finalmente, os componentes utilizados na construção da função de round
enquadram-se em duas categorias: lineares e não-lineares. Cada um destes tipos é anali-
sado num capítulo dedicado, explorando as propriedades que justificam o modo como esses
componentes são utilizados na função de round.
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1
INTRODUCTION

The whole point of cryptography is to solve problems. (Actually, thatǶs
the whole point of computers—something many people tend to forget.)

Bruce Schneier

IRAV IVQV IVPV

GAIVS IVLIVS CÆSAR

1.1 context

This work and the resulting thesis concern an area of knowledge called cryptology. It is a
vast field, that lies at a somewhat fuzzy intersection of mathematics, computer science, and
(mainly software) engineering. But in spite of that vastness, it is surprisingly unknown, even
to practitioners of some of the previously mentioned disciplines! It only gets worse when one
considers the general public as a target audience1. Nevertheless, it is the author’s opinion
that that same general public deserves at least an overview in broad strokes—but in terms
that it can be expected to understand—of how the resources that it trusts to the academic
enterprise are being put to use. For while usually hidden behind a more or less thick layer of
bureaucracy, it is the general public that is the ultimate patron of the majority of academic
work. Such is then, the aim of these first few paragraphs.

Cryptology can be (roughly) divided into two subareas: cryptography, and cryptanalysis.
Borrowing from (Anderson, 2008, §5.1)2 «cryptography refers to the science and art of design-
ing ciphers; cryptanalysis to the science and art of breaking them; while cryptology, often
shortened to just crypto, is the study of both». But what is a cipher? To a broad and diverse

1 On this last point the author wishes to offer the following piece of anecdotal evidence: in social settings, when
he is asked about his field of study, if he answers with ǳcryptographyǴ, the reply is often something along the
lines of ǳI’m sorry, did you say cartography?Ǵ.

2 This is also the source of (the idea for) the second epigraph above, the relevance of which will become obvious
momentarily.
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1.1. Context

(i.e. non-specialist) audience, a formal answer would be next to useless. An example however,
will be far more illuminating.

After achieving a swift victory at the Battle of Zela (47 BC), Gaius Julius Cæsar is rumoured
to have said «Veni, vidi, vici», alluding to the short duration of the conflict: ǳI came, I saw,
I conqueredǴ (Wikipedia, e). If Cæsar wanted to relay this information back to Rome, but
prevent his enemies from being able to read it (for example, by capturing the messenger), how
should he proceed? One possible strategy would be to agree with the intended recipient a
pre-specified permutation of the alphabet. For example, to write a message the enemy cannot
read, you could replace the A’s with N’s, the B’s with O’s, and so on, according to a scheme
known as ROT13 (Wikipedia (c), Figure 1.1) which is a particular variant of a more general
scheme known precisely as Caeser cipher (for simplicity it is assumed that all messages to
be transmitted are written in capital letters, and without punctuation marks). Then the
plaintext message ǳVENI VIDI VICIǴ is transformed into the ciphertext message ǳIRAV
IVQV IVPVǴ, and it is this last message that is transmitted. After receiving it, the recipient
simply reverses the process to obtain the original message.

Figure 1.1.: The ROT13 alphabet permutation.

Thus a cipher is a set of instructions to produce messages that are unreadable to all, except
those who are in possession of a crucial piece of information, called the key. In the case of the
Cæser cipher, the key is the concrete alphabet permutation to be used. Also note that the
same key is used by both the sender and the receiver of the secret message—these are called
symmetric ciphers. Today’s symmetric ciphers, while using far more advanced mathematics
than simple permutations, still work in essentially the same framework (from the point of
view of the cipher’s user).

The goal of this work is to lay the first steps towards a cipher of this type (symmetric)—one
that the author hopes will yield a stronger security guarantee than its predecessors.
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1.2. Objectives and Motivation

1.2 objectives and motivation

The objective of this work is the specification and analysis of a symmetric block cipher that
follows a simple algebraic model. The hidden objective is that that algebraic simplicity
can be translated into a more formal analysis of security—yielding correspondingly stronger
conclusions.

This work takes as a starting point the Rijndael cryptosystem (Daemen and Rijmen, 2002)3.
Its design philosophy already reflects the idea of simplicity (ibid., §5.2). In particular, its
authors divide it into two types: simplicity of specification, and of analysis. The former means
that only «a limited number of operations» are used, and that «the operations by themselves
can be easily explained». The latter means that we are able «to demonstrate and understand
in what way the cipher offers protection against known types of cryptanalysis». This provides
the motivation: it is hoped that the envisaged algebraic simplicity will lead to both these
requirements being fulfilled, with a particular emphasis on simplicity of analysis—where we
hope to leverage the underlying mathematical structure (and theory) to attempt to prove
better bounds for the different streaks of cryptanalytic techniques to be considered.

In more detail, symmetric ciphers are usually constructed combining (in an appropriate
way) components that provide confusion and diffusion (rigorous definitions of these concepts,
and of those that follow, will be given in the following chapters). The components to be used
for confusion are a particular type of Boolean functions, called «Almost Perfect NonLinear»
functions (APNL), while diffusion will be done using the «Chinese Remainder Theorem»
(CRT). The purpose is then to study these components, and see if they are suitable building
blocks for this class of ciphers—in particular, if they can yield better security guarantees than
their predecessors.

A final remark is in order, concerning something that, while being of fundamental import-
ance in the broader picture of block cipher development, will not be a prime goal of this work:
efficiency. The reason is that studying it is not deemed feasible in the available time. And
given that worrying about efficiency without ensuring security first is moot, it is the former
that must be, for the time being, postponed.

1.3 outline of this document

We start by rigorously stating the problem we attempt to solve, and giving some preliminary
notions which are needed to understand the rest of the work (§2). Next, an overview of the
state of the art is given (§3). This will pave the way for the complete description of our
cipher (§4). As will be detailed therein, all modern symmetric ciphers are built combining

3 Pronounced ǳrhine dahlǴ. This algorithm was chosen by the NIST in October of 2000, as the Advanced
Encryption Standard (AES). For details of the selection process, see e.g. (ibid., §1).
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1.4. License Information

components that provide one of two properties: diffusion and confusion. The former are
implemented through linear algebraic constructions, which will be addressed in §5, and the
latter are implemented with nonlinear functions, explained in §6. In this latter chapter the
round’s resistance to differential cryptanalysis will also be studied. The following chapter
(§7) describes two other powerful attacks against block cipher, viz. linear cryptanalysis and
algebraic cryptanalysis—which constitute one of the main directions for future work. This
future work, along with some concluding observations, are finally discussed in chapter 8.

remarks

The terms AES and Rijndael are, except when otherwise noted, used interchangeably. The
same is true for ǳblock cipherǴ and ǳsymmetric cipherǴ (when there is no risk of confusion,
both forms may be shortened to just ǳcipherǴ). Whenever there is ambiguity on whether a
certain word should hyphenated or not (e.g. ǳplaintextǴ versus ǳplain-textǴ), the adopted
convention will be to drop the hyphen(s)4.

Throughout this document several excerpts of source code are shown. Often however,
due to space and/or layout considerations, these are only uncommented snippets of a larger
file. When such is the case, the caption of those snippets indicates the relevant filename (in
typewritten face), under which the full content is available at http://erroneousthoughts.
org/mei. Still about the code, when referring names of methods, the convention is to always
end them in (), even though they might have mandatory arguments. This is done to aid the
reader in distinguish those from other names (e.g. variable names, etc.).

The author wishes to apologise in advance to the more academically conservative a reader,
for whom the liberal use of Wikipedia as a source, as done in this text, might be anathema. In
his defense, the author points out that such use is done only either on non-technical matters
(e.g. the introductory section), or when the information therein provided is corroborated by
other sources. This latter scenario, however, begs the question of why bother with Wikipedia
at all. The reason is that often it presents the information organised in such a fashion that
makes it very suitable to introduce a novel idea or concept—thus giving a basis from where
further (expository) writing can then be done. See for example, §B.2.

1.4 license information

• Figure 1.1 is in the Public Domain:
Wikipedia. Rot13. http://en.wikipedia.org/wiki/ROT13, c. Accessed: 2015-01-22

4 To give credit where it is due, this decision is largely due to Knuth’s argument here: http://www-cs-faculty.
stanford.edu/~uno/email.html.
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1.4. License Information

• Figure 2.1 is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported:
https://commons.wikimedia.org/wiki/File:LFSR_Fibonacci_8_bits.png, Accessed:
2015-08-31
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2
PRELIMINARIES

All of a sudden I had firm pegs on which I could hang other knowledge

Donald E. Knuth

This chapter describes the main algebraic structures used for this work, as well as the main
notions from cryptography that are required. For further details about the algebraic notions,
the reader is referred to Nicholson (2007).

A brief introduction of the relevant cryptographic concepts is also given in the final sections.

2.1 rings and fields

To define those structures, one must first define binary operations and groups. A binary
operation ∗ on a set M is a mapping that to each ordered pair of elements of M, (a, b) assigns
another element a ∗ b of M. Hereinafter, binary operations are assumed to be closed: i.e. for
all a, b ∈ M, a ∗ b ∈ M.

Definition 2.1.1 (Group). A set G together with a binary operation ∗ is said to be a group
if the following four properties:

1. ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c, ∀ a, b, c ∈ G.

2. G has an identity element of ∗. I.e. there is e such that ∀ g ∈ G we have e ∗ g = g.

3. Every element in G has an inverse. I.e. ∀ g there exists g−1 ∈ G such that g−1g = e,
where e is the identity.

G is called an abelian group if it verifies the following additional condition:

4. The operation ∗ is commutative.

With two binary operations, we can define a ring. This construction is a generalisation of
the structure of the integers, in which we have addition and multiplication.

Definition 2.1.2 (Ring). A set R together with two binary operations, + and ×, is said to
be a ring if the following properties hold:

6



2.2. Galois fields

1. (R,+) is an abelian group.

2. The operation × is associative.

3. The operation × has an identity element (which belongs to R).

4. The distributive law holds: a × (b + c) = a × b + a × c and (b + c)× a = b × a + c × a.

R is called an abelian ring if it verifies the following additional condition:

5. The operation × is commutative.

When no ambiguity will result, the × can usually be omitted. The operations + and × are
usually called addition and multiplication respectively (although they can be very different
operations from the usual addition and multiplication). For non-trivial rings, i.e. rings with
more than one element, the identities of the two operations are different elements of R. By
convention, the identity of + is denoted by 0, and the identity of × by 1.

Definition 2.1.3 (Field). A ring R is said to be a field if all elements in R \ {0} have
multiplicative inverse, and if the operation × is commutative.

This section ends with a note on notation: the operations, although usually referred to with
nomenclature similar to integer addition and multiplication can, as already mentioned, be very
different from their integer counterparts. Additionally, in the mathematical literature, the
symbols used also vary wildly. Furthermore, the elements of the set to which those operations
apply may even not be integers at all! One example of this latter case shall be seen shortly,
where the elements of the ring are polynomials.

2.2 galois fields

When the usual integer addition and multiplication are performed modulo a prime p, those
operations, together with the set {0, . . . , p − 1} form an algebraic structure called the Galois
field of size p, usually denoted by Fp. One such field of particular importance for computer
applications is the Galois field of dimension 2 (abbreviated to F2). It consists of a set with
two elements, {0, 1}, and two binary operations, + and ×. If the two elements are taken
to coincide with the two eponymous binary digits, then the former operation coincides with
binary addition without carry (or equivalently, the logical operation exclusive-or, or XOR),
and the latter with the logical AND. For convenience we present their definitions below.

Beyond fields of prime size, there also exist Galois fields of size pn, with p prime and n

nonnegative integer. The elements of these latter fields however, are not integers. Such fields
can be constructed, for example, with polynomials—see the next section. Before that however,
we mention one result from modular arithmetic that will be required in chapter 4.

Theorem 2.2.1 (Fermat’s (little) theorem). If p is a prime, then ap ≡ a (mod p), for all
integers a. If a is relatively prime to p, then that can be simplified to ap−1 ≡ 1 (mod p).
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+ 0 1
0 0 1
1 1 0

Table 1.: Addition in F2.

× 0 1
0 0 0
1 0 1

Table 2.: Multiplication in F2.

2.3 polynomials and bitstrings

A polynomial of degree m over a field F is defined as an expression of the form:

p0 + p1x +×pm−1xm−1 + pmxm (1)

where pm 6= 0, each pi ∈ F, and x is the indeterminate1. Note that a polynomial of degree m

has m+ 1 coefficients (including the zeros). The set of all such polynomials constitutes a ring,
denoted F[x]. Because of this, addition and multiplication are also defined for polynomials.
A polynomial is said to be irreducible if it can only be factorised as a product of itself
and 1 (multiplicative identity). The integer division algorithm also applies to polynomials:
for any p(x) and d(x), the exist q(x) and r(x) such that p(x) = d(x)q(x) + r(x) (with
deg(r) < deg(d)). This means modular arithmetic can also be done on polynomials; in fact,
for a given p(x), the set of all polynomials modulo p(x), denoted F[x]/〈p(x)〉 is a ring; if
p(x) is irreducible it is a field.

In F2, a polynomial can be naturally identified with a bitstring. Following the way SAGE
outputs an array of polynomial coefficients (independent term at index 0, i.e. ǳleftmostǴ, like
done above), we use the following convention when thinking of polynomials as bitstrings: the
independent term is the leftmost bit; and conversely, the coefficient of highest the degree
monomial is the rightmost bit. If the bitstring (or array) is depicted vertically, the inde-
pendent term is on top.

2.4 linear feedback shift registers

Consider the construction depicted in Figure 2.1. That is an LFSR: an array of bits, where
on each iteration, all bits are right-shifted by 1, and the leftmost bit becomes the XOR of
the bits in pre-specified positions of the original array (i.e. before the right-shift). They are
a particular case of shift registers, called ǳlinearǴ because the XOR operation is linear. They
have been used not only in cryptography, but also in coding theory. For a more thorough
description (and further references) see (Schneier, 1996, §16.2).

1 The reader may be used to thinking of x as the ǳvariableǴ, and indeed it can be thought of as one (and we shall
do so at times; cf. for instance the ending of §5.2). But that is not necessary: polynomials can be constructed
as mathematical objects which are never evaluated (i.e. x is never ǳgiven a valueǴ).
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Figure 2.1.: Example LFSR.

2.5 chinese remainder theorem

The Chinese Remainder Theorem (CRT) will be described in greater detail in chapter 5. Here
we shall outline the essential to be able to understand the cipher’s round description, given
in chapter 4.

Consider the polynomial ring F2[x], and the polynomial x257 + 1. In that ring it factorises as
a product of sixteen polynomials of degree 16 and one polynomial of degree 1; see Equation 4
in §5.1. Thus we can define a ǳbig ringǴ R[x] (or just R, when meaning is clear from context)
as F2[x]/〈x257 + 1〉, and seventeen ǳsmall ringsǴ ri[x] (or just ri, idem.), 0 ≥ i ≥ 16, as
F2[x]/〈mi〉, where m0 = x + 1, m1 = x16 + x12 + x11 + x8 + x5 + x4 + 1, and so on and so
forth, following the ordering suggested by Equation 4. Thus r0 is the ring that contains only
the two polynomials of degree 0 of F2, viz. 0 and 1; the other ri contain all polynomials of
degree smaller than 16. With the CRT we can construct an isomorphism between the big ring
R, and the direct product ring r[x] (or just r, idem.) defined by ∏i=0,...,16 ri. This means that
to any polynomial in R there corresponds one (and only one) tuple of seventeen polynomials
in the different ri, and vice-versa.

Polynomials in the big ring R (of degree at most 256) will be designated by P1, P2, . . .. The
corresponding element in r of P1 is the 17-tuple (p1

0, p1
1, . . . , p1

16). Basically the index of the
big ring ǳbecomes a superscriptǴ in the small rings. When considering just one element of R,
the subscript may be dropped, i.e. the element will just be denoted by P. The corresponding
element in r is (p0, p1, . . . , p16).

Coefficients of monomials will be referred to by a second subscript, e.g. P2,0 refers to the
independent term of polynomial P2, and p1

10,5 refers to the coefficient of the monomial of degree
5 of the polynomial in small ring r10, of the tuple in product ring r that corresponds to element
P1 in R. If the element of the big ring is denoted without subscripts, then we add them to
refer to the coefficients of that element; it will be clear from context what the subscript is
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being used for—i.e. if P1 is one element of R or the coefficient of the monomial of degree 1

of P ∈ R. For the corresponding element in r of polynomial P ∈ R we just add a second
subscript, but without any superscripts (e.g. p1,0 is the independent term of the polynomial
in r1.

As per the notational convention stated above, a given polynomial in R can be seen as a
257 bitstring; but concatenating the bitstrings of the polynomials of r yields another bitstring
(again of length 257). When doing so, the polynomials in the small rings will again be
identified with bitstrings having as leftmost bit the independent term, and furthermore those
strings will be concatenated from left to right, following the ordering of the tuple at the
beginning of the paragraph: first the bitstring of the polynomial in r0, then the one of in r1,
and so on until r16.

Particular bits in a bitstring can be identified by a coefficient of its corresponding polyno-
mial; for example, the rightmost bit of a 257 bitstring may be referred to as P256.

2.6 boolean functions and cryptography

Let X = {0, 1}n and Y = {0, 1}m, i.e. the sets of all binary strings of length n and m respect-
ively. A boolean function is a function from X to Y, i.e. f : X → Y. Consider the set of
all such functions; that set has size |Y||X|. If f is such that it cannot be ǳefficientlyǴ distin-
guished from a function chosen at random from |Y||X|, then we say that f is a Pseudorandom
function. If n = m, then it is a Pseudorandom permutation. An algorithm is said to be ǳeffi-
cientǴ if it is a practical algorithm; this is sometimes stated by saying the algorithm runs in
polynomial time. These notions can be defined more rigorously, but for the purposes of the
current work, the intuition of the concept that this paragraph tries to convey is sufficient.

A block cipher is a keyed pseudorandom permutation; ǳkeyedǴ means that it is actually a set
of pseudorandom permutations, and each choice of the key determines one such permutation.
Because block ciphers often needed to encrypt a variable amount data, different from n

bits, they are often used together with a mode of operation. These are basically ways to
repeatedly use the cipher to encrypt the required data, while maintaining the cipher’s security
properties. These modes range from simply using the cipher in parallel until all the data has
been enciphered (Electronic Code Book), to chaining the previous ciphered block the current
block (Cipher Block Chaining). For more details, see (Katz and Lindell, 2007, §3.6.4).

Block ciphers are a particular case of symmetric cryptosystems, because the same key is
used for encryption and decryption. They are called ǳblockǴ ciphers because both processes
are done ǳblock-wiseǴ. In contrast with, for example, stream ciphers, where it is done bit-wise
(i.e. with blocks of size 1).
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There several several types of attacks against block ciphers. The most (conceptually!) simple
one is a ciphertext only attack: here the cryptanalyst is given only ciphertext messages, and
has to deduce either their corresponding plaintexts, or the encryption key. Two other types
of attacks are known plaintext and chosen plaintext:

• In known plaintext, the cryptanalyst is given pairs of (plaintext, ciphertext) messages,
and has to deduce the key. An example is linear cryptanalysis.

• In chosen plaintext, the attacker can request pairs (plaintext, ciphertext), and his choice
of the next pair might be influenced by computations he made on earlier requested pairs.
An example of this is differential cryptanalysis.

There are other attacks, but these are the most relevant for this work. For more information
on those other attacks, see e.g. (Schneier, 1996, §1.1).

2.7 security requirements

Block ciphers are primarily designed to provide secrecy. That is, to transform a given plaintext
message in such a way that it its original structure—and thus its meaning—is removed,
and furthermore cannot be recovered without knowledge of the encryption key. However,
block ciphers can also be used as building blocks in other constructions, and these might have
security goals other than secrecy. A non-exhaustive list of examples is the following:

• Authentication: here the purpose is enable the receiver of a message to verify its origin.
In other words, the sender should not be able to send a message as someone else.

• Integrity: the receiver should be able to verify that the message has not been modified
since it was produced or sent. Or if such modifications have occurred, the receiver must
be able to detect that that was the case.

• Non-repudiation: A sender must not be able to send a given message, and later deny
having done so.

11



3
STATE OF THE ART

There is a remarkably close parallel between the problems of the physicist and
those of the cryptographer. The system on which a message is enciphered
corresponds to the laws of the universe, the intercepted messages to the evidence
available, the keys for a day or a message to important constants which have to
be determined. The correspondence is very close, but the subject matter of
cryptography is very easily dealt with by discrete machinery, physics not so easily.

Alan M. Turing

I conclude that there are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies and the other way is
to make it so complicated that there are no obvious deficiencies. The first
method is far more difficult. It demands the same skill, devotion, insight, and
even inspiration as the discovery of the simple physical laws which underlie the
complex phenomena of nature.

C. A. R. Hoare

For a project of this nature, researching the state of the art encompasses several topics. The
first one is security: what does it mean for a block cipher to be secure?—this is the topic of
sections 3.1 and 3.2. Next, as mentioned previously, this work’s starting point is the design
of Rijndael, so a brief description of this cipher is also in order. After this, a brief description
is given of how the primitives of confusion and diffusion will be lay out in the cipher to be
developed.

3.1 defining security, attempt #1

Alan Turing may have been correct when he quipped that computers are naturally more suited
to cryptography than to physics, but despite that suitability, all the ǳdiscrete machineryǴ in
the world will not help us in providing a sensible definition of what it means for a cipher to
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be secure. The main problem is that security is relative: what is secure in one usage scenario
might be totally insecure in another one. Furthermore, ǳsecurityǴ can have different meanings
depending on the context: it can mean privacy/secrecy, or integrity, or authentication, or
non-repudiation, etc. Providing one of these can hinder the effort to provide another. For
example secrecy requires integrity (see below), but combining the two securely leads to some
non-obvious concerns (Bellare and Namprempre, 2000), that simply do not exist with integrity
alone. Another example is combining non-repudiation with anonymity, and so on. This means
that one has to think about security in terms of trade-offs. To make matters even worse,
«[b]lock ciphers are very useful building blocks. They tend to get abused in every imaginable
way.» (Ferguson and Schneier, 2003, §4.2). All of this makes attempting to provide a ǳone
size fits allǴ definition a very challenging task.

Nevertheless, the goal of a block cipher, when seen as a cryptographic primitive of its own
right (as opposed to when seen as a building block of a larger construction), is to conceal a
given message, i.e. to provide secrecy; so let us put the focus there. The first attempt to
study the security of block ciphers stemmed from Claude Shannon’s groundbreaking work in
Information Theory, which he then applied to problem of secret communication (Shannon,
1949). He started by carefully delimiting the problem, by noting that while secrecy systems
can generally be classified as being of one of three types, his concern would be only one of
those types. More concretely, secrecy systems can be concealment systems, that hide the
existence of the message (think ǳinvisible inkǴ), or what Shannon dubbed privacy systems,
«for example speech inversion, in which special equipment is required to recover the message»
(ibid.); or, lastly, they can be «ǳtrueǴ secrecy systems where the meaning of the message is
concealed by cipher, code, etc., although its existence is not hidden, and the enemy is assumed
to have any special equipment necessary to intercept and record the transmitted signal» (ibid.).
Shannon’s focus was on systems of the third type, which are what we today call symmetric
cryptosystems1.

He then proceeded to determine the requirements for a secrecy system that could not
be broken even by an adversary with unlimited resources. That is, if given a (ciphertext)
message enciphered with one such system, not even such a powerful adversary would be
able to recover the original (plaintext) message—or any part of the original message, no
matter how small. Shannon dubbed this perfect secrecy, and it essentially means that an
adversary—any adversary, no matter how powerful—observing the ciphertext will not be
able to extract any information whatsoever from it. Another way to phrase this is to say the
ciphertext does not leak any information about the plaintext. This means the adversary is
left with only what information he already knew, a priori, about the plaintext. It is possible
to construct cryptosystems which possess this property; however Shannon also proved that

1 The reader may have noticed that the third definition also encompasses asymmetric cryptosystems. But these
had not yet been developed at the time of Shannon’s work; and furthermore, they are not this work’s focus—we
just state this for completeness.
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they inherently require keys that are (at least) as long as the plaintext messages (ibid., §10),
which makes perfect secrecy an inadequate definition for most real-world scenarios: indeed
if one has the capability of transmitting securely keys that are as large as the plaintext, one
would usually be justified in ditching the keys altogether and transmitting only the plaintext
messages!

It should be stressed, if only in passing, that even though for the purposes of the present
discussion we have restricted the meaning of information security to information secrecy, it is
well settled that when using block ciphers, it is impossible to guarantee secrecy if the usage
mode does not also provide integrity. For a general description of what can go wrong see
for example Bellovin (1996); padding oracle attacks (Vaudenay, 2002) are another example.
This is true even if the block cipher in question provides perfect secrecy: for example, with
the One-Time Pad2, although it is perfectly secret, not only is the ciphertext malleable, but
also one can always claim the key had any value that makes the ciphertext decipher to any
plaintext one wants (Anderson, 2008, §5.2.2). Alas there is perfect secrecy, but no message
integrity. Security is relative!

So total, ǳabsoluteǴ security does not seem possible, and even perfect secrecy seems im-
practical. This latter problem can be ameliorated by relaxing the definitions. First we stop
considering adversaries with unlimited power, and restrict the analysis to adversaries with a
computational power that is ǳrealistic in practiceǴ. Next, we weaken the definition of perfect
secrecy, so that we no longer demand the ciphertext leaks no information about the plain-
text, but rather that the information that is leaked is not easily retrievable by the weaker
adversary we are now considering. The more formal expression of these ideas is actually pos-
terior to Shannon’s work, and thus is not needed here. Nevertheless they encompass what he
meant by ǳpractical secrecyǴ3, to which we devote the rest of this section.

For any general symmetric cipher, after enough ciphertext has been intercept, it is pos-
sible—at least in theory—to uniquely solve (i.e. to determine an unique key). This happens
after reaching the unicity distance. However, even after this point has been reached, the
amount of work required to determine this solution for different ciphers can vary greatly. The
two most oft-cited principles Shannon put forth to maximise this amount of work are confu-
sion and diffusion (we will get to these shortly), but there exists a third, very important one:
that all (or the majority) of the bits of the key should be used to encrypt all of the message.
This prevents attacks that break the keyspace into smaller chunks (thus reducing the overall
effort to determine the key).

To make the cryptanalyst’s job as hard as possible, Shannon suggested two approaches,
which he called diffusion and confusion (Shannon, 1949, §23)4. Diffusion consists of having

2 In Shannon (1949), a special form of the One-Time Pad, that applies to letters of the alphabet (instead of
bits) is designated by the ǳVernam systemǴ.

3 Shannon, op. cit., §21 onwards.
4 This is not the whole truth: he also mentions that one could resort to ideal secrecy systems (loc. cit.), although

these are seldom practical (ibid., §18).
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the «statistical structure of M which leads to its redundancy [is] ǳdissipatedǴ into long range
statistics». In other words, the patterns present in the plaintext (due to redundancy of the
message) should be as scattered as possible, in order to increase the amount of traffic that
has to be intercepted before said patterns become noticeable. In modern parlance this means
that changing one bit of the input should change as many bits of the output as possible.

Confusion consists in «mak[ing] the relation between the simple statistics of E and the
simple description of K a very complex and involved one». Shannon gives one simple example
where this is not the case: the (simple) substitution cipher. Indeed, here the key consists
in a particular permutation of the alphabet, and with a few ciphertexts one can already (by
frequency count) severely constrain the set of possible keys. The current way to think about
confusion is as trying to obscure the relationship between the plaintext, the ciphertext, and
the key. This makes attacks that exploit the relationship between them (e.g. differential and
linear cryptanalysis) much harder to carry out.

3.2 defining security, attempt #2

In the current state of the art, the most general definition of block cipher security is that which
is based on the notion of computational indistinguishability (Katz and Lindell, 2007, §3.2.1).
But this is more helpful when one tries to give a security reduction5 for some construction
that uses the block cipher, rather than when one is tasked with designing it. We can build
a ǳprovably secureǴ block cipher, taking as a starting point for example, a ǳsecureǴ stream
cipher (Anderson and Biham, 1996). But then the problem remains of how to define what
security means when applied to stream ciphers… And furthermore, this ǳreductionist-styleǴ
reasoning is not useful when the cipher is to be built from lower level components, as is the
case in this work. Lastly, the authors of Rijndael point out that the proofs of security that
have been presented for block ciphers rely «on (often implicit) assumptions that make [the
proof] irrelevant in the real world»—although they don’t give any references or examples
(Daemen and Rijmen, 2002, §5.5.3).

So provable security will not do. What other alternatives are there? Daemen and Rijman
offer two security criteria—K-secure and hermetic—that are so abstract that they themselves
admit that «we cannot prove that Rijndael satisfies [them]», even before stating the respective
definitions (ibid., §5.5.1). These seem to be a sort a posteriori criteria—given a particular
block cipher design, you study it and see if the definitions are verified. But again, this is not
useful as a guide for design choices.

The strategy that remains is to guide the design by increasing resistance to attacks. What
do we mean by ǳattackǴ? Grosso modo, it means a way of obtaining some piece of information
that the attacker should not be able to access. For example, all ciphers where the size of

5 Also known as proof of security.
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the key is much smaller than the size of the plaintext are vulnerable to an attack called
brute force. This consists of trying all the possible keys. If the attacker has a (plaintext,
ciphertext) pair, then (at least) one key is going to match and, with very high probability it
will be unique—which means it is the correct key. But even if the attacker only has ciphertext
messages, only very few keys will yield intelligible plaintext messages—which is already a
substantial reduction of the number of possible keys. The only way to thwart this attack
(other than using keys as large as the plaintext) is to use a key size that, while smaller than
the plaintext size, is still large enough to make trying all possible keys infeasible. Then the
cipher will be secure against attacks by brute force.

More generally, if a new way is discovered of obtaining some information, about the key
and/or the plaintext, that takes less ǳeffortǴ than brute force, then that will constitute a new
attack (such is the case, for example, with differential cryptanalysis). Thus, we say that a
cipher is secure when either no such attacks exist, or when they are, for the cipher in question,
infeasible to carry out.

This will be the course of action to be pursued. But it should be noted that, while here
only resistance against cryptanalytic attacks will be tested, this is, in general, not sufficient.
To give an example, in (Ferguson and Schneier, 2003, §4.2) it is argued that if a cipher that
is vulnerable to related key attacks is used in the Davies-Meyer construction, the resulting
hash function will be insecure (also cf. the ending of the first paragraph above).

3.3 complexity as a future-proof strategy

Developing ciphers is a long process. After being proposed it has to be attacked, and it will
only be trusted if it successfully resists those attacks (or if it is only vulnerable to attacks that
are not practical, by a large margin). Thus, when developing a cipher, the designers want
to be as confident as possible that it will resist any novel attack that might appear in the
future. This is often used as a justification to introduce additional complexity. Moreover, the
lack of such complexity motivated the following criticism of AES: «It is possible to write an
AES encryption as a relatively simple closed algebraic formula [...] if anyone can ever solve
[it], then AES will be broken», followed by an anecdote of how a hypothetical mathematics
graduate student might break AES when searching for something to do in an afternoon of
boredom (ibid., §4.5.2).

Besides being essentially a defense of security by (design) obscurity, such a criticism misses
an important point: with a simple design, a cipher that withstands years of attack will become
trusted, and everyone will understand the rationale behind that trust. With a complicated
one, it will take more time to reach the same level of trust, but there will still exist a greater
possibility that some weakness has escaped the designers’ eyes, precisely because it was hidden
in the complexity of the design! Furthermore, such weaknesses, if they do exist, will require
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more time for being rooted out. And lastly, ease of implementation matters. As Whitfield
Diffie wrote in the foreword to Schneier (1996): «all the great cryptographic papers in the
world do not protect a single bit of traffic». The more complicated the design, the more likely
it is that implementation mistakes will occur—and then, no amount of theoretical results will
be of any help in achieving security.

Although not (directly) related to cipher design, we describe, as but one example of what
can go wrong with the complexity mindset, Donald Knuth’s attempt to create «a fantastic-
ally good [pseudorandom number] generator», using an algorithm, dubbed Algorithm K, so
complicated «that a person reading a listing of it without explanatory comments wouldnǶt
know what the program was doing.» (Knuth, 1997, §3.1). The result, however, was failure
(emphasis on the original):

Considering all the contortions of Algorithm K, doesn’t it seem plausible that
it should produce almost an infinite supply of unbelievably random numbers?
No! In fact, when this algorithm was first put onto a computer, it almost im-
mediately converged to the 10-digit value 6065038420, which—by extraordinary
coincidence—is transformed into itself by the algorithm (see Table 1). With an-
other starting number, the sequence began to repeat after 7401 values, in a cyclic
period of length 3178.

The moral of this story is that random numbers should not be generated with a
method chosen at random. Some theory should be used.

Considering the critical dependency of cryptographic primitives on the underlying source of
pseudorandom numbers6, it seems reasonable that the above cautionary tale should apply to
the development of said primitives as well.

3.4 the Rijndael cipher

As previously mentioned, Rijndael strives for simplicity. It consists of a key-independent
round transformation, applied iteratively, with intermediate key additions in between. Its
pseudocode description is given below. For further details the reader is referred to (Daemen
and Rijmen, 2002, §3).

The key to understand how it works is to understand its State. Its 16 bytes are arranged
top to bottom, left to right, 4 bytes per columns. Thus byte 0 is on the top left corner,
and byte 15 on the bottom right corner. The key is arranged similarly (although with a
possibly different number of columns). These form the State and CipherKey variables. The
intermediate keys are just XOR’ed with the intermediate round output.

The number of rounds varies according to the size of the key, so as to maximise resistance
to cryptanalysis (the more rounds, the more resistant—but also the more slower—the cipher

6 See, e.g. (Goldreich, 2006, §1.1.2).
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becomes). Each round is composed by three operations, described in the next three para-
graphs.

SubBytes is the operation that introduces non-linearity. It is an SBox that is applied
to all the bytes of the state (note that it is the same SBox for all bytes). The non-linear
function over GF(28) implemented by the SBox is f : x → y = x−1 (0 maps onto itself). To
prevent interpolation attacks however, the SBox actually implements f followed by an affine
transformation (which does not affect its non-linearity properties).

ShiftRows is a byte transposition that acts on the rows of the state (remember that the
state is in essence a byte matrix with 4 rows and a variable number of columns). In the
version of Rijndael that was standardised as the AES, with a fixed block length of 16 bytes,
the first row shifts 0 bytes to the left, the first 1 byte, the second 2; and the third 3.

MixColumns is a permutation that acts on the state column by column. It interprets
each column as a polynomial over GF(28), and multiplies it with a fixed polynomial (modulo
an irreducible polynomial over the same field).
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Rijndael(State, CipherKey)
{

KeyExpansion(CipherKey, ExpandedKey);
AddRoundKey(State, ExpandedKey[0]);
for(i=1; i < N_r; i++) {

Round(State);
AddRoundKey(State, ExpandedKey[i]);

}
FinalRound(State);
AddRoundKey(State, ExpandedKey[i]);

}

Round(State, ExpandedKey[i])
{

SubBytes(State);
ShiftRows(State);
MixColumns(State);

}

FinalRound(State, ExpandedKey[i])
{

SubBytes(State);
ShiftRows(State);

}

3.5 substitution-permutation networks

In Shannon’s aforementioned article, before discussing (among other things) the principles of
confusion and diffusion, he stated that «[i]t is difficult to define the pertinent ideas involved
[in making cryptanalysis as hard as possible] with sufficient precision to obtain results in the
form of mathematical theorems, but it is believed that the conclusions, in the form of general
principles, are correct» (Shannon, 1949, §21). Thus, there is more than one way of designing
a cipher that accommodates both principles. Rijndael’s structure is one such way, but the
most common using what is known as Substitution-Permutation network (or SP-network, for
short). This basically consists of layer providing confusion (usually through S-Boxes), followed
by another layer providing diffusion, usually through permutation boxes (or P-boxes, for
short). This is the scheme that we shall follow, although diffusion will be provided by a
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construction different than P-boxes. The details are given in §4; also, see Figure 6.4 for a
schematic of a typical SP-network design.
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4
CIPHER DEVELOPMENT

Il [le chiffre] faut quǶil nǶexige pas le secret, et quǶil puisse sans
inconvénient tomber entre les mains de lǶennemi.

Auguste Kerckhoffs

One of the motivations of this work is to study the cryptographic properties of the CRT
isomorphism. They fell short of what was expected, but nevertheless led to a design that
seems promising. This chapter describes the design iterations that resulted in the current
round function—which is then described. Finally other aspects of cipher development are
described, namely the key schedule and the number of rounds, which in the present work
were only briefly touched.

4.1 building blocks

The goal is to construct a symmetric cipher with a simple algebraic description, for which
we had available the following repertoire of constructions: polynomial modular arithmetic,
exclusive-OR, multiplication in the big ring, CRT, APNL and split/join. Each of these is
described in the following subsections.

4.1.1 Exclusive-OR

This is one of the most used operations in cryptography, it corresponds to addition modulo 2

or, equivalently, addition in F2.

The epigraph is the original French version of what is today known as Kerckhoffs’ principle: «The design of a
system should not require secrecy, and compromise of the system should not inconvenience the correspondents».
It is usually paraphrased as ǳthe security of the system must rest solely in the key (and not in the algorithm’s
design)Ǵ.
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4.1.2 CRT and Modulus

As mentioned, there exists an isomorphism between the polynomial ring R[x]/〈x257 + 1〉

(denoted by R), and the product ring of the 17 rings that comprise the factorisation of the
modulus (ri) (Eq 4). The CRT operation corresponds to taking a 17-tuple of polynomials
in the ri, and writing it as polynomial in R. The modulus (mod) operation corresponds to
the inverse, i.e. taking the polynomial in R and writing it as a 17-tuple. The reason it is
called ǳmodulusǴ is because dividing the polynomial in R by the modulus of the different
ri yields the different elements of the 17-tuple; see chapter 5 for details. Additional details
on the underlying mathematics of the CRT can be found in any standard Abstract Algebra
textbook, e.g. Nicholson (2007).

4.1.3 Multiplication in R

Let P be a polynomial in R, and consider the vector of its binary coefficients, P0P1 · · · P256.
Multiplying P by x means moving all bits in the vector one position to the right (right-shift),
and P256 to the left-most position. More generally, to multiply P with xm one has to right-shift
all bits m positions, with round-robin (i.e. ǳlooping aroundǴ). If the polynomial has more
than one monomial, the multiplication can be done monomial by monomial.

Note that the described operation can be implemented efficiently (specially in hardware)
using an LFSR.

4.1.4 APNL functions

Almost Perfect Nonlinear Functions (APNL functions) are designed to make differential crypt-
analysis as hard as possible. These are the Boolean functions, with the same number of input
and output bits, used for S-Boxes. There exists a very advanced theory about them; see Pott
and Edel (2009); Weng et al. (2013); Edel and Pott (2009); Berger and Canteaut (2006). In
addition, they are further described in chapter 6.

4.1.5 Split/Join

The join operator takes a 17-tuple of polynomials in the small rings, and returns the polyno-
mial in the big ring, that corresponds to the concatenation of those polynomials. It is defined
as the inner product of that tuple (seen as a vector) with

J = (x0, x(x16)0, x(x16)1, x(x16)2, . . . , x(x16)15)
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4.2. Round one

Thus we have

(p0,0, p1,0 + p1,1x + · · ·+ p1,15x15, . . . , p16,0 + p16,1x + · · ·+ p16,15x15)

· (x0, x(x16)0, x(x16)1, x(x16)2, . . . , x(x16)15)

= P0 + P1x + · · ·+ P16x16 + · · ·+ P241x241 + · · ·+ P256x256

Conversely, the split operator takes a polynomial in the big ring, and returns the elements
of the 17-tuple, from left to right. Algorithm:

Let P = P0 + P1x + · · ·+ P16x16 + · · ·+ P241x241 + · · ·+ P256x256 and D = x.
1. Polynomial division: let Q and R be such that P = Q × D + R

2. Push R to the leftmost available position in the 17-tuple.

3. Let P = Q and D = x16.

4. Go to step 1 and repeat until P has no nonzero monomials left.

5. Return the 17-tuple.

4.2 round one

The first round function that was sketched used mainly the CRT and APNL constructions.
It is depicted in Figure 4.1. The idea was to treat the received plaintext block as a 17-tuple
of the polynomials in the small rings ri, put that through 16 S-Boxes (each implementing an
APNL function from 16 to 16 bits), take the result (also a 17-tuple of polynomials in the
small rings) and run it through the CRT matrix, and multiply the resulting polynomial in R

with the round key—seen here also as a polynomial in the big ring R. The S-Boxes would
implement APNL functions, at the time yet to be chosen.

Note that what was just described is a round function that maps 257 input to 257 output
bits. This was something to avoid if possible—using an input length that is not a power of
of 2 would, at the very least, make it harder to write efficient implementations. The most
obvious strategy seemed to be tweaking the cipher to the nearest power of 2 (256), by somehow
ǳgetting ridǴ of the p0,0 bit—which is why its arrow has a question mark. But the question
mark is there because of another issue: if getting rid of that extra bit turned out not to be
possible, than what should be done with it? An APNL function for one bit only is overkill,
but it clearly cannot go directly to the CRT either, sidestepping the confusion layer.

Another problem that this structure has is that R is a ring, but not a field, which means that
there exist elements for which there is no multiplicative inverse, which constrains the choice
of round keys. But this is not as problematic as it seems. The reason is that R is isomorphic
to the 17-tuple, and the property of having an inverse is preserved by isomorphisms. Now
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4.2. Round one
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Figure 4.1.: First sketch of round design.
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4.3. Round two: dropping the mod

each of the small rings ri is actually a field (the moduli are all irreducible, cf. A.1), and fields
have the property that the only element without multiplicative inverse is 0 (i.e. the additive
identity). This means we can calculate the proportion of elements with inverse (possible keys)
to the total number of elements (note that it must be p0,0 = 1, because the only other element
of r0 is 0):

(216 − 1)16

2257
≈ 0.4999

This seems really bad news—the keyspace just got reduced to half !—but even so, there is still
enough entropy to make the cipher secure: log((216 − 1)16)/ log(2) = 255.9996 i.e. almost
256 bits of entropy.1

The most serious flaw, however, is related with iterating this round structure. For the
second round, we need to take the output of the first (a polynomial in R), and convert it to
a 17-tuple in the ri, through the mod operation. Which is problematic because mod is the
inverse operation of the CRT: applying one after the other, with only a linear operation in
between (the multiplication by the round key), is essentially the same thing as applying only
the linear transformation.

4.3 round two: dropping the mod

The solution to the last objection of the previous section was to drop the mod operation, and
even though the output of the first round is a polynomial in R, the second round would treat
the corresponding bitstring as a 17-tuple, and put it through the S-Boxes, etc. Note that the
construction thus obtained is reversible: during decryption, when going from round j + 1 to
round j, we do the opposite i.e. we take the bitstring corresponding to the 17-tuple and treat
it as representing a polynomial in R. Strictly speaking, we did not ǳdrop the modǴ operator;
it is still required for decryption, to reverse the CRT operation. But for encryption it is no
longer necessary.

The ǳchange of perspectiveǴ from seeing a bitstring as representing an element of R to an
element in the product ring can be described more formally; indeed it corresponds to the split

operator. The inverse operation corresponds to the join operator.
This seemed a more promising design, but there was still the matter of the element of r0.

There were a few ideas. One was to make that bit a ǳparity bitǴ. By this it is not meant that
the input should be 256 bits, and the algorithm then computes the parity of that bitstring, and
feeds it to the round—this is an increase in redundancy, which in some scenarios can actually
make cryptanalysis easier (Bellovin, 1996). Rather, the CRT isomorphism has the property
that given a 17-tuple (p0, . . . , p16), and its corresponding polynomial in R, P1, then p0 is the

1 For a slightly amusing, if very informal, justification of why that entropy more than
enough, see this discussion thread: https://security.stackexchange.com/questions/14068/
why-most-people-use-256-bit-encryption-instead-of-128-bit.
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4.4. Round three: the strange case of the ǳeven-sizedǴ APNL functions

parity of the bits of P1 (see §5.2.1). Another option was to ǳshift by oneǴ the 16 S-Boxes,
i.e. apply them first ǳleaving outǴ P1,0 (which would go unchanged to round two), then apply
them ǳleaving outǴ P1,256, and so on. However while these options were being studied, a far
more serious problem surfaced, concerning the APNL functions. Interestingly, the solution
for that problem also took care of the ǳextra bitǴ—which was not extra anymore.

4.4 round three: the strange case of the ǭeven-sizedǮ apnl functions

When the alternative designs began to be coded in SAGE, the APNL function chosen was
the Gold function, defined by: y = x2i+1, with x, y ∈ F2n , and gcd(i, n) = 1. This choice was
motivated by the simplicity of its definition (compare with alternative choices for example
in (Pott and Edel, 2009, Table 1, p. 3)). In our scenario n = 16, thus the smallest possible
value for i was chosen: 3. So the APNL function is y = x9. The next step is to write down the
formula for its inverse. The simplest approach is to use Theorem 2.2.1 to compute d such that
(x9)d = x mod 216, or equivalently 9d = 1 (mod 216 − 1). The problem with this approach
is that the latter modulus is composite: 216 − 1 = 3 × 5 × 17 × 257. I.e. gcd(9, 216 − 1) 6= 1,
which means the congruence has no solution. Worse: if n is even, a power function which is
APNL will not be bijective, and thus will not be invertible (Carlet, 2009, Prop. 17)2. From
the same source however, also came a formula for the inverse, when n is odd (ibid., §3.1.6).
The inverse of x2i+1 is in fact of the form y = xd, where

d =

n−1
2

∑
k=0

22ik (mod 2n − 1) (2)

This suggested that the scheme of Figure 4.1 could be modified, with a different layout of
S-Boxes. That layout would be based on the different ways 257 can be written as a linear
combination of primes. Two observations: first, we are now considering S-Box layouts that
will not allow the CRT isomorphism to be used (at least not directly), and so it does not
make sense to stick only to 256 bits—hence the full 257 length was used. And second, to
overcome the limitation of an explicit inverse, we needed only to make sure n was odd, not
prime. However, requiring primeness seemed the more conservative choice, and because it
came with no additional drawbacks, that was the path followed.

The bigger the S-Box, the more memory requires its implementation, but the smaller the
S-Boxes used in a round, the stronger its diffusion has to be (otherwise some correlations
between input and output might exist). Thus the option chosen was: 19 × 1 + 17 × 14—see
§4.7.1 for further details.

2 Also cf. file gold_odd.sage for a test of injectivity on F28 , where the formula for the inverse (Eq. 2) also fails.
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4.5. Further changes

4.5 further changes

However those were not the only changes. Because the CRT can no longer be used directly,
experiences were conducted with an alternate mechanism for diffusion, namely using some
carefully chosen constants in R, which are then multiplied by the output of the S-Boxes. Note
that the idea is to have one (different) round constant per round; see §5.4 for further details.

This in turn, prompted yet another change. Given that constants were already being
multiplied in the big ring, following that by the multiplication of the round key might, in some
cases, ǳundoǴ part of the diffusion created by the multiplication of the constants. Constants
were chosen so as to maximise diffusion, but round keys are random. To avoid this, the way
round keys are applied was changed from multiplication in R to XORing.

Lastly, for symmetry reasons, the fourteen 17-bit S-Boxes were applied as depicted in
Figure 4.2, and the latter half implement the inverse function of the former half. This final
design is described in the next section.

4.6 final round

Figure 4.2 might at first seem a bit daunting, so the first task is to explain it. The round
structure depicted takes as input a 257 bitstring (indexed with the coefficients for a generic
polynomial of R, as explained in chapter 2). This input bitstring is put through a layer of
fifteen S-Boxes: S1,1 through S1,7 implement the chosen Gold function (x9) in F217 ; and S1,9

through S1,15 implement the inverse Gold function (xd with d as in Eq. 2). Note that all these
S-Boxes have input and output of length 17. S1,8 also implements the Gold function, but on
F219 , which means its input and output length is 19. The resulting bitstring is then multiplied
by the round constant, and to the result of this operation the round key is XORed.

Figure 4.2 depicts one encryption round; for decryption the order of the operations is
reversed. This does not mean the order of S-Boxes is changed; they remain in the same
positions, but now the ǳbottom halfǴ implement the Gold function, while the ǳtop halfǴ (plus
S1,8) implement its inverse, on the respective fields. Still concerning the S-Boxes, note that
there is no penalty in terms of space requirements, in using both the Gold function and its
inverse in the round: even if this was not the case, the table for the inverse S-Box would still
have to be stored, for it is required for decryption. More on the size of the S-Boxes will be
said in section 4.7.1.

We end this section by giving a quick walk-through of this round’s implementation in
SAGE.3 The full code is available in the script round_F2_17_19_constants.sage.

3 An overview of SAGE is given in Appendix A.
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4.6. Final round
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Figure 4.2.: Final round design.
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4.6. Final round

1 GF2=GF(2)
2 P_GF2.<X> = PolynomialRing(GF2)
3

4 mod17 = X^17+X^3+1
5 mod19 = X^19 + X^18 + X^13 + X + 1
6 GF2_17.<m> = P_GF2.quotient_ring(mod17)
7 GF2_19.<n> = P_GF2.quotient_ring(mod19)
8

9 def gold_f9(p_xval):
10 p_xval = p_xval**9
11 return p_xval.list()
12

13 # i = 3
14 # sage: reduce(lambda a, b: a+b, [2**(6*k) for k in range(0, 9)]) % (2**17-1)
15 # 29127
16 def gold_inv17(p_xval):
17 p_xval = p_xval**29127
18 return p_xval.list()
19

20 # i = 3
21 # sage: reduce(lambda a, b: a+b, [2**(6*k) for k in range(0, 10)]) % (2**19-1)
22 # 466033
23 def gold_inv19(p_xval):
24 p_xval = p_xval**466033
25 return p_xval.list()

Code Snippet 4.1: Code for the S-Boxes.

The three S-Box Boolean functions are implemented as shown in Code Snippet 4.1. Func-
tions gold_inv17 and gold_inv19 receive a polynomial object with m or n as the indeterm-
inate, respectively, and compute its inverse using an exponent calculated according to Eq. 2.
gold_f9 receives a polynomial object with either indeterminate, and returns the exponenti-
ation in the proper Galois field.

The encryption round is shown in Code Snippet 4.2. It has a straightforward correspond-
ence with Figure 4.2: the input is put through the S-Box layer, then the round constant is
multiplied, and finally the round key is XORed, and the output returned. Note that going
from the output of the S-Boxes (which is in the small rings) to the multiplication of the con-
stant (which is in the big ring) the (implicit) join operator is used.

Decryption is similar, but with one nuance: the round constants must be inverted. In a
real implementation both the constants and their inverses would be stored, but here inversion
is done with the SAGE one-liner:

1 inv_const = P_GF2(list(const_i)).inverse_mod(big_modulus)
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4.7. Some remarks on implementation

Lastly, the mentioned SAGE script also contains tests that iterate the use of the round
function. When this is done, the structure used is that of an SP-network, which means that
before the first round, an initial key is XORed to the input (cf. §5.4). This is implicitly stated
in both Figures 4.1 and 4.2, where the round key is denoted by k1 (instead of k0), precisely
because k0 is the key that is XORed to the plaintext, prior to the first round.

1 def round_enc(mi, ki, const_i):
2 aux = gold_f9(GF2_17 (mi[17*0 :17*1]))
3 aux += gold_f9(GF2_17 (mi[17*1 :17*2]))
4 aux += gold_f9(GF2_17 (mi[17*2 :17*3]))
5 aux += gold_f9(GF2_17 (mi[17*3 :17*4]))
6 aux += gold_f9(GF2_17 (mi[17*4 :17*5]))
7 aux += gold_f9(GF2_17 (mi[17*5 :17*6]))
8 aux += gold_f9(GF2_17 (mi[17*6 :17*7]))
9

10 # 17*7+19 = 138
11 aux += gold_f9(GF2_19 (mi[17*7:17*7+19]))
12

13 aux += gold_inv17(GF2_17 (mi[138+17*0:138+17*1]))
14 aux += gold_inv17(GF2_17 (mi[138+17*1:138+17*2]))
15 aux += gold_inv17(GF2_17 (mi[138+17*2:138+17*3]))
16 aux += gold_inv17(GF2_17 (mi[138+17*3:138+17*4]))
17 aux += gold_inv17(GF2_17 (mi[138+17*4:138+17*5]))
18 aux += gold_inv17(GF2_17 (mi[138+17*5:138+17*6]))
19 aux += gold_inv17(GF2_17 (mi[138+17*6:138+17*7]))
20

21 res = fill257((P_GF2(list(aux)) *
22 P_GF2(list(const_i))) % big_modulus)
23

24 return map(lambda a, b: a+b, res, ki)

Code Snippet 4.2: Encryption round.

4.7 some remarks on implementation

Although implementation concerns were not the current work’s focus, there are some aspects
of a more practical nature that cannot be avoided. Chiefly among those is the size of the
S-Boxes, about which there is enough to say to dedicate a separate subsection to it, §4.7.1.

Besides S-Boxes, the proposed round structure uses polynomial multiplications in the big
ring R, and bitwise XOR for the round keys. About polynomial multiplication, it can be a
computationally costly operation when considered in its fullest generality (i.e. with arbitrary
algebraic structures). However because in this work all the rings and fields have characteristic
2, polynomial multiplication in R of the round constants can be efficiently implemented using
an LFSR. Note that some properties that are usually desirable for an LFSR to have—maximal
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4.7. Some remarks on implementation

period, for example—are not necessary here: of interest is only the fact that they offer a fast
and simple way to implement the diffusion mechanism.

On what concerns the XORing of round keys, it is also a fast and simple operation, but
one which has, in our scenario, a caveat, namely the fact that the bitstrings are of length 257.
As mentioned at an earlier section, this was something to be avoided, if possible. As it was
not, what is left to do is to analyse its impact on the cipher’s operations, as well as possible
mitigation strategies—for further discussion see chapter 8.

4.7.1 On the size of S-boxes

There are two different ǳsizesǴ to consider: one is the size of the S-Boxes per se (which affect
the choice of the layout), and the other is the size of the implementation of the chosen S-Box
layout. We will address first the former, then the latter.

When seen as a Boolean function that maps n input bits to m output bits, an S-Box can
be implemented as a lookup table. The size of such a lookup table is 2n · m bits: we just
store the possible outputs, each of m bits; and there must be one output for each of the 2n

possible inputs4. When n = m, as is the case with the S-Boxes used in this work, it simplifies
to 2n · n. Furthermore, for decryption it is also necessary to store the inverse S-Box; in the
simplified case we just multiply the size by 2: 2n+1 · n. Note that size of an S-Box depends
solely on the length of its input and output; in particular it does not depend on the specific
Boolean function it implements.

As mentioned previously, there are several choices for constructing an S-Box layout that
encompasses the round’s 257 input bits, based on the different ways of writing 257 as a linear
combination of primes (the fact the layout will give the round’s 257 output bits is guaranteed
by only considering S-Boxes with n = m). It seemed prudent not to depart too much from the
original choice, of 16 S-Boxes of 16 bits each. For this reason the focus was on ways of writing
257 as linear combinations of two primes; adding a third would mean the primes would have
to be smaller. For example, we have 257 = 10 × 13 + 10 × 11 + 1 × 17, but with two primes
we have 8 × 13 + 9 × 17. The first attempt was to search a layout based on primes 17, 19,
and 23, using the code shown in Snippet 4.3. This was the output:

{'19': 1, '17': 14} sbox size in kbytes = 2976
{'17': 7, '23': 6} sbox size in kbytes = 47648

The difference in size is because the S-Box of 23 input bits is considerably bigger than the
others:

4 This ignores extra bits that might be required in an implementation, e.g. for padding. But because imple-
mentation details are not the focus of the present work, the S-Boxes are here compared only with respect to
their ǳtheoretical sizeǴ.
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4.7. Some remarks on implementation

1 pp = MixedIntegerLinearProgram()
2 v = pp.new_variable(integer=True, nonnegative=True)
3 x,y,z = v['17'],v['19'],v['23']
4

5 C = [ x*17 + y*19 , x*17 + z*23 , y*19 + z*23 ]
6

7 def sbox_size(n):
8 return round(2*n*2**n/(8.0*1024),0)
9

10 Sboxes = {'17' : sbox_size(17) , '19' : sbox_size(19) , '23' : sbox_size(23) }
11 keys = Sboxes.keys()
12

13 for c in C:
14 pp.set_objective(c)
15 pp.add_constraint(c <= 257)
16 if pp.solve() == 257 :
17 res = {} ; size = 0
18 for k in keys:
19 res[k] = int(pp.get_values(v[k]))
20 if res[k] != 0: size += Sboxes[k]
21 print str({k:v for (k,v) in res.iteritems() if v != 0}).ljust(25, ' '), \
22 'sbox size in kbytes =', size

Code Snippet 4.3: S-Box sizes, with primes 17, 19, and 23.

sage: Sboxes
{'17': 544, '19': 2432, '23': 47104}

For this reason, and because this attempt produced only two choices, the next idea was to
replace the biggest S-Box (23) with one of 13 bits. This is done replacing lines in Snippet 4.3
like so:

1 # replaces line 3
2 x,y,z = v['13'],v['17'],v['19']
3

4 # replaces line 5
5 C = [ x*13 + y*17 , x*13 + z*19 , y*17 + z*19 ]
6

7 # replaces line 10
8 Sboxes = { '13' : sbox_size(13) , '17' : sbox_size(17) , '19' : sbox_size(19) }

The result is shown below. The sizes are all much smaller, and because the size difference
between the last two choices is small, it was decided to go the last one viz. 19 × 1 + 17 × 14.

{'13': 8, '17': 9} sbox size in kbytes = 570
{'19': 6, '13': 11} sbox size in kbytes = 2458
{'19': 1, '17': 14} sbox size in kbytes = 2976
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4.8. Key schedule and number of rounds

With the size of the layout decided, the focus is the size of its implementation. As already
mentioned, implementation is not the focus of this work, so this is mentioned for completeness.
The previous script calculates size assuming that each function (and its inverse) only needed to
be implemented once. This is effectively a lower bound on the size requirement of the layout.
But this may not be feasible, for example if all 17 bit S-Boxes implement different Boolean
functions (see Figure 4.2). Remember from section 4.6 that S1,1 through S1,7 implement x9,
and S1,9 through S1,15 implement its inverse. This needed not be the case: S1,1 through S1,7

could still implement the Gold function, but with different exponents (with the other 7 S-Boxes
implementing the corresponding inverses). Or all fourteen 17 S-Boxes could be different
functions. Or even if those fourteen S-Boxes implement the same function, the requirement
could be imposed of them processing the input in parallel, instead of sequentially re-using
the same implementation. This leads to an upper bound, in which the size of an S-Box must
be multiplied by the number of such S-Boxes present in a layout. Modifying the code in
Snippet 4.3 to calculate these upper bounds is straightforward: the only change needed is to
replace line 20 with:

1 size += res[k]*Sboxes[k]

Then the size requirements for the last three layout choices become as shown below. This
further strengths our choice, because its upper bound is actually smaller than for the layout
using 13 bit S-Boxes.

{'13': 8, '17': 9} sbox size in kbytes = 5104
{'19': 6, '13': 11} sbox size in kbytes = 14878
{'19': 1, '17': 14} sbox size in kbytes = 10048

4.8 key schedule and number of rounds

As will be shown in chapter 5, two rounds with the described structure already provide ǳfull
diffusionǴ, in the sense of (Daemen and Rijmen, 2002, §3.5). Nevertheless, the security margin
of the cipher is very dependent on the number of rounds5, so one cannot be too careful. And if
anything, cryptographic history shows that one is often justified in erring in the side of caution.
Consider the case of the FEAL cipher, designed to have a strong round function, so as to
need fewer rounds; its four round variant, FEAL-4, succumbed to differential cryptanalysis
with only 20 chosen plaintexts Murphy (1990)—and this was not even the worst attack on
FEAL-4 (Schneier, 1996, §13.4). The author would be very surprised if the proposed round

5 For instance in (Anderson et al., 1998, §2): «16-round Serpent would be as secure as triple-DES, and twice as
fast as DES. However, AES may persist for 25 years as a standard and a further 25 years in legacy systems,
and will have to withstand advances in both engineering and cryptanalysis during that time. We therefore
propose 32 rounds to put the algorithm’s security beyond question».

33



4.9. Conclusions

structure could be made into a secure cipher with less than 10 rounds, the minimum for
Rijndael (Daemen and Rijmen, 2002, §3.5).

And continuing on the subject of turning the round into a fully-fledged cipher, one thing
that has not been described it the key schedule. This will be the most pressing item in the
list of future work. But at least for completeness’ sake, if for nothing else, the author feels
that, as a minimum, the criteria that a good key schedule should meet must be given some
mention. Unfortunately, this is easier said then done (Daemen and Rijmen, 2002, §5.8):

There is no consensus on the criteria that a key schedule must satisfy. In some
design approaches, the key schedule must generate round keys in such a way
that they appear to be mutually independent and can be considered random [...]
[F]or some ciphers, the key schedule is so strong that [it] appears to make use of
components that can be considered as cryptographic primitives in their own right.

For Rijndael, its authors list three criteria that guided the design of its key schedule(ibid.).
The second one is resistance to something called related-key attacks, and the third is resistance
to certain attacks in scenarios where the cryptanalyst knows or can chose parts of the key
(usually when the block cipher is used as a primitive in some larger construction). For the
purposes of the current work, the most relevant seems to be their first criteria: the key
schedule must introduce asymmetry. Quoting again:

The first one is the introduction of asymmetry. Asymmetry in the key schedule
prevents symmetry in the round transformation and between the rounds leading
to weaknesses or allows attacks. Examples of such weaknesses are the comple-
mentation property of the DES or weak keys such as in the DES. Examples of
attacks that exploit symmetry are slide attacks.

Although the authors of Rijndael employ a somewhat narrow definition of symmetry (ibid.,
§5.3), it at least partially applies to the round structure this chapter describes—and from
here stems the importance of asymmetry for the key schedule to be developed.

4.9 conclusions

This chapter describes the ǳend productǴ, if it so may be called, of the work that has been
done. The coming chapters describe specific parts of the overall result, until the final chapter
on conclusions. For this reason, the concluding remarks that could justifiably be placed here
are postponed until chapter 8.
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5
LINEARITY

In general terms, linearity referrers to mechanism used to provide diffusion. The initial idea
was that said mechanism would be based on the ring isomorphism that stems from the Chinese
Remainder Theorem (CRT). This turned out not to be possible, so another alternative was
taught up. However, the CRT is still used somewhat implicitly, which is why this chapter
begins with its description. Then it describes the alternative construction for diffusion, and
analyses its strength.

5.1 the chinese remainder theorem

In its original form, the Chinese Remainder Theorem (CRT)1 consists of a method for solving
multiple congruences. To take an example from Wikipedia (a): «what is the lowest number
n that when divided by 3 leaves a remainder of 2, when divided by 5 leaves a remainder of 3,
and when divided by 7 leaves a remainder of 2?». More formally we have2:

Definition 5.1.1 (Chinese Remainder Problem). Let N = q1q2 · · · qn, with gcd(qi, qj) = 1

for i 6= j. Given n elements ai ∈ Zqi
, determine a ∈ ZN such that a ≡ ai (mod qi) for all

i = 1, . . . , n.

The way to solve this problem is to calculate the CRT basis, which in the context of Defin-
ition 5.1.1, is a sequence of integers e = 〈e1, · · · , en〉, that guarantees that a, computed like
so:

a =

(

n

∑
i=1

ai ei

)

mod N (3)

has the required property, viz. that a ≡ ai (mod qi) for all i = 1, . . . , n. In order to construct
the CRT basis one can use the SAGE function crt_basis3. We can use it for instance, to
solve the example mentioned in the first paragraph; see Code Snippet 5.1.

1 It is so named because the version of this result relating to integer congruences was already known to the
Chinese in the first century AD.

2 This brief exposition is based on Professor Valença’s lecture notes.
3 An overview of the SAGE background required is provided in Appendix A.
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5.1. The Chinese Remainder Theorem

1 sage: crt_basis([3, 5, 7])
2 [-35, 21, 15]
3 sage: -35*2+21*3+15*2
4 23
5 sage: 23%3
6 2
7 sage: 23%5
8 3
9 sage: 23%7

10 2

Code Snippet 5.1: Example of using SAGE to solve a simple CRT example.

But the reason the CRT is interesting to us is that, as already mentioned, it can be used to
provide diffusion. This is possible because we can generalise it from the integer rings Zqi

and
ZN to rings built on more general structures—and then choose one suitable to our purposes.

To use the CRT to manipulate bits, we shall apply it to over F2[x]. In this ring, the modulus
factorises in F2 as the product of one polynomial of degree 1 and sixteen polynomials of degree
16:

x257 + 1 = (x + 1)

· (x16 + x12 + x11 + x8 + x5 + x4 + 1)

· (x16 + x13 + x8 + x3 + 1)

· (x16 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + 1)

· (x16 + x14 + x12 + x11 + x8 + x5 + x4 + x2 + 1)

· (x16 + x14 + x13 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1)

· (x16 + x14 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + x2 + 1)

· (x16 + x14 + x13 + x12 + x11 + x9 + x8 + x7 + x5 + x4 + x3 + x2 + 1)

· (x16 + x15 + x8 + x + 1)

· (x16 + x15 + x13 + x9 + x8 + x7 + x3 + x + 1)

· (x16 + x15 + x13 + x11 + x10 + x8 + x6 + x5 + x3 + x + 1)

· (x16 + x15 + x13 + x12 + x10 + x9 + x8 + x7 + x6 + x4 + x3 + x + 1)

· (x16 + x15 + x14 + x8 + x2 + x + 1)

· (x16 + x15 + x14 + x12 + x10 + x8 + x6 + x4 + x2 + x + 1)

· (x16 + x15 + x14 + x13 + x9 + x8 + x7 + x3 + x2 + x + 1)

· (x16 + x15 + x14 + x13 + x11 + x10 + x8 + x6 + x5 + x3 + x2 + x + 1)

· (x16 + x15 + x14 + x13 + x12 + x11 + x8 + x5 + x4 + x3 + x2 + x + 1)

(4)
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5.2. Polynomial Ring Isomorphism

Each of the seventeen ǳsmallǴ polynomials is irreducible (cf. snippet A.1), which means that
each of the rings ri is actually a field—their moduli are all irreducible polynomials—but as
the CRT applies to rings, we think of them as rings, and tacitly ignore their additional field
structure. This means that we can construct one particular algebraic structure, which we will
show in the next section to be isomorphic to the ǳbig ringǴ R. It is the product ring of the
ǳsmall ringsǴ, ∏

16
i=0 ri, which elements we will represent with a 17-tuple: (r0, r1, . . . , r16). We

will apply the CRT to these structures having the ǳbig ringǴ R play the same ǳroleǴ as ZN,
and similarly with the ǳsmall ringsǴ ri and Zqi

(cf. §5.1). Then we can define an isomorphism,
which allows us to switch between the two representations: to go from small to big we use
the CRT, and to go from big to small use (polynomial) modular division. This is the subject
of our next section.

5.2 polynomial ring isomorphism

With the structure described at the end of the previous section, computing the CRT basis
results in polynomials of degree 252–256. To go from polynomials to bits, we now derive the
matrix to transform the vector (ǳstringǴ) in the small rings into the corresponding vector in
the big ring R (the matrix that reverses the process is its inverse).

Let p = [p0, p1, . . . , p16] be a row vector of the polynomials in the small rings (deg(p0) =

0, the others have degree at most 15). The CRT basis is, as mentioned, composed by 17
polynomials of degree ≥ 252. If we denote it as column vector e = [e0, . . . , e16]

T, then the
application of Equation 3 is straightforward: one has only to do the matrix multiplication

p · e =
16

∑
i=0

piei (5)

To go from polynomials to bits, consider the second term of that summation (we will deal
with the first one in a moment). We have p1e1 = p1,0x0e1 + p1,1x1e1 + · · ·+ p1,15x15e1. If we
let (xe1)j denote the coefficient of the jth term of the polynomial xe1 (and similarly for the
other xie1), then we can already write p1e1 as a product of a bit row vector by a bit matrix:

p1e1 = [p1,0, · · · , p1,15]



















e1,0 e1,1 · · · e1,256

(xe1)0 (xe1)1 · · · (xe1)256

(x2e1)0 (x2e1)1 · · · (x2e1)256

...
... . . . ...

(x15e1)0 (x15e1)1 · · · (x15e1)256



















(6)

The key observation here is that when multiplying a polynomial by a scalar, the coefficients
of the result polynomial are obtained by multiplying the corresponding coefficients of the
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5.2. Polynomial Ring Isomorphism

argument polynomial with the scalar. So Eq. 6 really yields the coefficients of p1e1, ordered
similarly as the coefficients of p1 are in the row vector.

Continuing this process, we can write a bit row vector for the coefficients of all the terms
of summation 5, like so:

[p0,0, p1,0, · · · , p1,15, · · · , p16,0, · · · , p16,15] (7)

For this 257 bit row vector, the corresponding matrix is the 257× 257 CRT matrix (horizontal
lines added for readability):

CRT =









































































(e0)0 (e0)1 · · · (e0)256

(e1)0 (e1)1 · · · (e1)256

(xe1)0 (xe1)1 · · · (xe1)256

(x2e1)0 (x2e1)1 · · · (x2e1)256

...
... . . . ...

(x15e1)0 (x15e1)1 · · · (x15e1)256

(e2)0 (e2)1 · · · (e2)256

(xe2)0 (xe2)1 · · · (xe2)256

...
... . . . ...

(x15e2)0 (x15e2)1 · · · (x15e2)256

...
... . . . ...

(e16)0 (e16)1 · · · (e16)256

(xe16)0 (xe16)1 · · · (xe16)256

...
... . . . ...

(x15e16)0 (x15e16)1 · · · (x15e16)256









































































(8)

This also shows why we did not use the first term in summation 5: because p0 is a polynomial
of degree 0, it only has one monomial, and thus only ǳcontributesǴ one row to the matrix,
viz. the first one, comprised of the coefficients of e0.

Conversely, if we invert the CRT matrix, and then multiply it by a bit row vector of the
coefficients of an element of R (independent term on the left; padded to length 257 as needed),
we obtain the coefficients of the remainders in the small rings, ordered as in expression 7.

Because we can represent the CRT transformation by a matrix, we know it is an homo-
morphism. More concretely, if p = (p0, . . . , p16) and p′ = (p′0, . . . , p′16) are two elements in r,
and the CRT transformation is denoted by f , then from the properties of matrices we know
that

f (p + p′) = f (p) + f (p′) = P + P′
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5.3. Diffusion analysis of the CRT matrix

where P and P′ are the elements of R corresponding to p and p′ respectively. A similar
property holds for multiplication, thus the transformation is homomorphic. The fact that the
matrix is squared and invertible means the CRT transformation is also a bijection, which in
turn means the homomorphism is actually an isomorphism. Furthermore, its inverse trans-
formation is also isomorphic (because the inverse of a square invertible matrix is another
square invertible matrix).

5.2.1 The parity bit

Let P be a polynomial in R, and (p0, . . . , p16) its corresponding representation in the product
ring. Then, according to the CRT, p0 = P mod (x + 1). This can be written as P =

(x + 1)Q(x) + p0, for some polynomial Q(x) of degree 255 (remember that p0 is a polynomial
of degree 0). If we set x = 0, then we get ∑

i=256
i=0 Pi = p0, i.e. p0 is the parity of the bitstring

that contains the coefficients of P.

5.3 diffusion analysis of the CRT matrix

Just as for confusion, the concept of diffusion was introduced in a seminal paper by Claude
Shannon (Shannon, 1949):

Two methods (other than recourse to ideal systems) suggest themselves for frus-
trating a statistical analysis. These we may call the methods of diffusion and
confusion. In the method of diffusion the statistical structure of M which leads
to its redundancy is ǳdissipatedǴ into long range statistics—i.e., into statistical
structure involving long combinations of letters in the cryptogram. The effect
here is that the enemy must intercept a tremendous amount of material to tie
down this structure, since the structure is evident only in blocks of very small
individual probability. Furthermore, even when he has sufficient material, the
analytical work required is much greater since the redundancy has been diffused
over a large number of individual statistics.

This is an admittedly abstract ǳdefinitionǴ and, to make matters worse, that abstractedness
is somewhat inherent, as the authors of Rijndael readily concede: «The exact meaning of the
term diffusion depends strongly on the context in which it is used.» (Daemen and Rijmen,
2002, §9.2.3). In the context of block cipher design, what this means is that changing one bit
of the input should change ǳas manyǴ bits of the output as possible. More formally, define a
multipermutation as follows (Vaudenay, 1994):

Definition 5.3.1. A (r, n)-multipermutation over an alphabet Z is a function f from Zr to
Zn such that two different (r + n)-tuples of the form (x, f(x)) cannot collide in any r positions.
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5.3. Diffusion analysis of the CRT matrix

Note that this definition is more general than bits, in that it applies to functions that take
values from an essentially arbitrary set of symbols (of which F2 is a concrete example). A
function with that property achieves perfect diffusion: changing t symbols of the input changes
at least n − t + 1 symbols of the output (ibid.). Indeed, if you change t symbols from x,
obtaining x′, then by Definition 5.3.1 (x, f (x)) and (x′, f (x′)) cannot collide in r or more
components—which means they have to collide in less than r components, or equivalently,
they have to differ in at least n + 1 components. If x and x′ already differ in t components,
then f (x) and f (x′) have to differ at least in n + 1 − t components—thus f achieves perfect
diffusion.

Besides verifying Definition 5.3.1, if f is a linear transformation, then it can be shown
that the set of (r + n)-tuples of the form (x, f (x)) constitute a Maximum Distance Separable
(linear) code, or MDS code for short4. Accordingly, we have the following definition:

Definition 5.3.2 (MDS matrix). A matrix is said to be an MDS matrix if it is the matrix
of a linear transformation f , such that the set of all tuples (x, f (x)) forms an MDS code.

Unfortunately, the CRT matrix is not an MDS matrix, a fact that is readily illustrated by
noting the following: say your input is a vector that consists only of zeros. Flip the bit in
position i. Then the number of bits that are flipped in the output equals the Hamming weight
of row i of the CRT matrix. That value is 257 for the first row, and 144 for all the others,
which is less than 257 − 1 + 1 = 257, which is the number of bits that should be flipped in
CRT was indeed an MDS matrix. The Hamming weights of the CRT matrix are calculated
with the code in script crt_hw.sage.

This fact is not specific to the CRT matrix: in fact, for any non-trivial binary matrix, it
will not be MDS—see §B.4 for details. But it did suggest another approach: the CRT matrix
is not MDS when seen as a binary matrix, but maybe it would be if it is seen as operating
on some larger blocks. In other words, if we discard the bit from r0 and look at the (256

bit) input vector as being composed of, for example, 32 ǳsubstringsǴ, each of length 8. We
multiply it by the CRT matrix and look at the output in a similar manner, counting how
many ǳsymbolsǴ (each a substring of length 8) have changed.

The described approach is implemented in file crt_flipmap.sage. The input is divided
into blocks of the given length, a number of those blocks is chosen randomly, and each is
changed, also randomly. Then if the corresponding block in the output is changed, a 1

is printed; otherwise 0. Thus we obtain a ǳmatrix of changesǴ. Note that because this
maps differences, the linearity of the CRT matrix makes the actual values irrelevant; thus
the initial value was the 0 vector, which was randomly flipped. It was not possible to test all
possible changes, the results obtained suggest that closest this matrix comes from showing
the MDS property is when it is seen as mapping 16 input symbols (each of length 16) to 16

output symbols (idem.). Then, in all the tests, changing any (one) block always led to all
4 See Appendix B for details.
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5.4. Constants in R and ǳfull diffusionǴ

blocks being changed in the output. Note that this result does not show that the 16 × 16

transformation is MDS. But if it is, then it has to be with this block size—for smaller sizes
there are elements that remain unchanged, and this 16 is the largest possible block size.

5.4 constants in R and ǭfull diffusionǮ

As described in chapter 4, changing the S-Box layout, to something that no longer coincided
with the small rings tuple, weakened the case for using the CRT matrix to provide diffusion.
One of the alternatives thought up to replace the diffusion mechanism was to use specifically
chosen values in R, which are multiplied with the output of the S-Boxes, seen as an element
of the big ring. This seems to work well, as described below.

The values for the constants were selected taking into account their Hamming weight. More
precisely, they were chosen to have approximately half of the bits set to 1. Furthermore, they
were constructed so as to have the 1s uniformly distributed. Multiplication by a polynomial,
in R, can be seen as a combination right-shifting and round-robin: to ǳmultiplyǴ a bitstring
by xm, you just shift all bits m positions to the right (increasing index values), and after index
256 you go back to index 0. If the polynomial has more than one monomial, you just repeat
the operation for the new exponent.

The CRT isomorphism allows this multiplication to be seen as taking place in the small
rings. And because they are ǳmis-alignedǴ with the S-Box layout, rotating the bitstring
in the small rings will spread the bits to the adjacent S-Boxes. Although this can seem
a relatively weak diffusion mechanism, a simple test shows it to be stronger than what it
might appear. Choosing the constants to have half the bits set to 1 was a first guess; it is
still not clear whether it can be improved. The constants were calculated using the script
diffusion_constants.sage.

That script just chooses constants with appropriate Hamming weight; the values that are
actually used can be seen in the round_F2_17_19_constants.sage script. As mentioned
in §4, the same script also implements a simple test for the diffusion capabilities of the
round construction described in that chapter. The idea comes from (Daemen and Rijmen,
2002, §3.5), where it is stated that «[t]wo rounds of Rijndael provide ǵfull diffusionǶ, in the
following sense: [...] a change in one state bit is likely to affect half of the state bits after
two rounds». To apply this idea to our round design, two functions were implemented in
the aforementioned SAGE script: one to generate a random input, encrypt it, flip one bit to
the input, encrypt the modified input, and count the differences in the outputs; and another
function to run this test over a pre-specified number of iterations. Actually, the ǳflippingǴ
function that was implemented is more general, because it allows for the number of input bits
to be flipped to be given as an argument to it. Thus the test that was implemented to test
changing 1, 10, 100, 200 and 256 (i.e. flip all but one) input bits, and see how many changes
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occurred in the output; for each case ten thousand runs were executed. The results were the
following:

Flipping 1 bit(s): 128 bits flipped on output
Flipping 10 bit(s): 128 bits flipped on output
Flipping 100 bit(s): 128 bits flipped on output
Flipping 200 bit(s): 128 bits flipped on output
Flipping 256 bit(s): 128 bits flipped on output

The first thing to note about the results is that they are very uniform. Contrast with what
happens with ten rounds—there is more dispersion:

Flipping 1 bit(s): 131 bits flipped on output
Flipping 10 bit(s): 123 bits flipped on output
Flipping 100 bit(s): 131 bits flipped on output
Flipping 200 bit(s): 129 bits flipped on output
Flipping 256 bit(s): 128 bits flipped on output

The next thing is that although 128 is very close to half, it is not half of the 257. Given the
high number of iterations, the displayed number of output changes is an average; but still,
it seems that on some cases 129 bits should have been flipped. If the process was random
one would expect to see the number of bits flipped oscillate between 128 and 129. This could
have been caused by rounding errors, although more thorough testing is needed to ascertain
if that was the case.

5.5 conclusions

This chapter described the two linear constructions that could be used to provide diffusion.
The one that ended up being chosen—the second one—seems promising, although more tests
have to be done. In particular, it still has to be checked that the flipped bits occur at random
locations. I.e. that there isn’t one specific output bit that is likely to be changed (or not to be
changed) when a specific input bit is changed. Nevertheless, the result already achieved—that
for a number of (different) input changes, half of the output bits change—is a promising
starting point. Another thing to verify is if, with the round design used, the fact that the
diffusion primitive is not a multipermutation introduces any significant weaknesses.
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6
NON-LINEARITY

The design took advantage of certain cryptanalytic techniques, most
prominently the technique of ǳdifferential cryptanalysisǴ, which were
not known [at the time] in the public literature.

Don Coppersmith

Nonlinearity refers to the mechanism used to provide confusion, which is typically provided
in a construction called S-Box. This chapter begins with a thorough description of differential
cryptanalysis, one of the oldest attacks to target specific weakness in S-Box design. That
analysis is used to assess the choices made for the round function’s nonlinear components.

Before proceeding, it must be noted that in the following sections, two of cryptography’s
most famous dramatis personæ, Alice and Mallory, are used sometimes, to refer to the honest
party and the active attacker (i.e. the cryptanalyst) respectively.1

6.1 differential cryptanalysis

Differential cryptanalysis is a chosen plaintext attack. It was first (publicly) described in Bi-
ham and Shamir (1991). The objective is to determine the value of key bits of the round key
for a certain round, usually the last one. It was originally applied to DES; but the latter’s
structure tends to make the essence of the attack harder to grasp. A better explanation
might be Heys (2002), in which differential cryptanalysis is applied to a simplified cipher (but
having the SP-network structure). The approach we will follow here is based on that one.

The idea of the attack is to exploit the existence of correlations between the input and
output differences. Let f be a generic Boolean function, and consider two (input, output)
pairs: (x0, y0) and (x1, y1). If x0 + x1 = a, then we say a is the input difference (i-XOR) of
the pair (ǳdifferenceǴ meaning bitwise XOR). Similarly, if y0 + y1 = b, the output difference

1 In full disclosure, the author must note that he was very tempted to replace those characters with their Hindu
counterparts, as suggested here: http://drpartha.org.in/publications/alicebob.pdf. But in the end he
chose not to, not least because cryptography is already complicated enough with the existing cast—no need
for a new one.
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6.2. The S-boxes

(o-XOR) is b. These differences might also be denoted by ∆x and ∆y respectively. For one

encryption round, we can calculate the probability P(∆y = b | ∆x = a)—i.e. the probability
of, given x0 and x1 as above, having roundenc(x0) + roundenc(x1) = b. The objective of
differential cryptanalysis is to predict, from ∆x, the input difference to the last encryption
round, and use that information to extract bits from the last round key. This can be done if
there exists one input difference (to the cipher) that will produce a specific output difference
(at the end of n − 1 rounds), with probability significantly higher (or lower) than most other
output differences (for that fixed input difference).

In what follows, the pair of differences at specific points of the cipher (e.g. input and output),
(∆x, ∆y), is called a differential. A differential characteristic is a differential that contains
all the intermediate differences, if any, i.e. (∆x, ∆w0, ∆w1, . . . , ∆y). The goal is to construct a
high probability differential between a plaintext (input) difference, and the input difference
to the last round (i.e. the output difference after n − 1 rounds). Let us break this problem
into parts. A final note: because differential cryptanalysis is a chosen plaintext attack, in the
following sections Mallory is tacitly assumed to be able to obtain ciphertexts for plaintexts
of his choice.

6.2 the s-boxes

The first step is for each type of S-Box2, to tabulate how, for a fixed input difference, different
pairs of inputs give raise to different possible output differences. To illustrate this, consider
the S-Box of the Mini-AES (toy) cipher (Phan, 2002), specified in Table 3. Note that this is
a boolean function where both input and output consist of bitstrings of length 4, and it is a
bijection, and thus invertible. The ensuing discussion, although also illustrated with examples
of length 4, generalises, mutatis mutandis, for bit strings of arbitrary length.

Input Output
0000 1110
0001 0100
0010 1101
0011 0001
0100 0010
0101 1111
0110 1011
0111 1000

Input Output
1000 0011
1001 1010
1010 0110
1011 1100
1100 0101
1101 1001
1110 0000
1111 0111

Table 3.: The S-Box of Mini-AES.

2 Note that while some ciphers only use one specific S-Box (e.g. AES), others do not: DES for instance, uses 8
different S-Boxes.
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Consider now a specific i-XOR, say 1011. We can map the output differences, by construct-
ing a table like Table 4.

o-XOR Input values
0010 0000, 1011, 0001, 1010, 0011, 1000, 0110, 1101
0101 0100, 1111
0111 0010, 1001
1101 0111, 1100
1111 0101, 1110

Table 4.: o-XOR distribution for fixed i-XOR 1011.

This table must be read as follows: for any o-XOR, corresponds a list of input values. For
each of these values, there exists another input value such that XORing them gives the fixed
i-XOR (1011 in the case of Table 4), and XORing the output of both yields the corresponding
value in the o-XOR column. If the i-XOR is different than 0000 (see below), this allows to
group the input values pairwise, and indeed in Table 4 they are juxtaposed, meaning the
pairs for e.g. o-XOR 0010 are (0000, 1011), (0001, 1010), etc. Note that due to the way it is
constructed, in any given distribution (table), all the input values are listed, exactly once.

There are a couple of remarks that must be made about the o-XOR distribution table.
First, if the i-XOR happened to be 0000, the table would have only one line, namely for the
o-XOR value 0000—and that entry would contain all 24 possible values. If we were to list
the pairs, it would contain all 24 values, twice, for to obtain an i-XOR of 0000, we would have
to XOR each input value with itself. Hereinafter we shall assume that this sort of table is
always constructed for an i-XOR different than 0000.

Second, not all possible o-XOR values are listed in the left column. What this means is
that for this S-Box, there is no pair of input values (with XOR 1011) such that the XOR of
their outputs is one of the missing values. For example, there is no pair of input values which
has an o-XOR of 1000. Furthermore, it would not be possible—in an S-Box with the same
number of input and output bits—to have all possible XORs in the left column. To see why,
let the boolean function implemented by the S-Box be denoted by f , a be an input difference,
and b an output difference. If there is an input value x, for which there exists another input
value x + a such that f (x) + f (x + a) = b, then both x and x + a will appear under the entry
b, and nowhere else! This effectively partitions the 24 values into groups of 2, and there are
23 such groups—and thus the table’s left column can have at most 23 entries. More generally,
for length n, the table can have at most 2n−1 entries—and there will be much more to say
about the boolean functions for which this is the case.

Third, this allows us to compute conditional probabilities of the kind mentioned above.
For example, the probability that, given inputs with i-XOR 1011, the o-XOR is 0010 is
8/16 = 1/2, because there are 16 input values for which there exists another input such that
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their XOR is 1011, and from these, there are 8 such that their o-XORis 0010. Symbolically
P(∆y = 0010 | ∆x = 1011) = 1/2.

Fourth, note that Table 4 is, in some sense, very ǳnon-uniformǴ: for example, the first row
has half of the input values! The most ǳnon-uniformǴ case is when f is linear : indeed for any
x1, x2, we have f (x1 + x2) = f (x1) + f (x2). If we were to construct an o-XOR distribution
table, then ∀ x1, x2 : x1 + x2 = a, so f (x1) + f (x2) = f (a). Thus the table would have only
one entry, corresponding to the o-XOR value f (a).

Although S-Boxes are supposed to be non-linear, it is worthwhile to take a closer look
to what happens when the function f it implements is linear. Linearity can be seen as a
degenerate case of non-linearity3, and analysing those extreme cases can provide valuable
insight into the way an attack (or more generally, an algorithm) work. This is the topic of
the next section.

6.2.1 The simplest case

Consider the construction depicted in Figure 6.1. This is as simple a cipher (with an S-Box)
as the author can envisage: to encrypt plaintext x, XOR it with key k, and the result y is
put through the S-Box (which implements boolean function f ) producing ciphertext z (only
the key is assumed to be secret). Note that the length of the key and of the input to the
S-Box are the same. This diagram can be considered a ǳzoom-inǴ on the diagram of a generic
SP-cipher: x would be part of the input (or of the output of the previous round), k would be
part of the round key, and z would be part of the round output. It could also be seen as a
standalone construction, which can be made secure as long as the S-Box is ǳbig enoughǴ—at
the very least, it should make building a distribution table an impractical task4. However,
in this section and the next two, the purpose is to convey the intuition behind differential
cryptanalysis and thus all the S-Boxes involved will be ǳrealisticǴ, in the sense of being small
enough to make computing distribution tables something easily done via computer.

For carrying out differential cryptanalysis, we start by supplying the oracle with a plaintext
message x0, and obtaining the corresponding ciphertext z0. Similarly, we obtain the pair
(x1, z1), and compute x0 + x1 = a. Notice that if x0 + k = y0 and x1 + k = y1, then
y0 + y1 = x0 + x1 = a. I.e. we know the i-XOR to the function f , which means we can

3 If f is linear when f (a + b) = f (a) + f (b), then it is nonlinear when this conditions fails, i.e. when f (a + b) =
f (a) + f (b) + γ, for some nonzero γ. Thus the linear case can be seen as a degenerate case of nonlinearity,
with γ set to 0.

4 The reason for using the wording ǳcan be made secureǴ is because as depicted, it is not secure, for reasons
explained at the beginning of §6.2.2. But barring that issue, this construction is secure because «[c]onfusion
alone is enough for security. An algorithm consisting of a single key-dependent lookup table of [adequate size]
would be plenty strong. The problem is that large lookup tables require lots of memory to implement [...].
The whole point of block cipher design is to create something that looks like a large lookup table, but with
much smaller memory requirements.» (Schneier, 1996, §14.10). A lookup table being of ǳadequate sizeǴ means
precisely that it is infeasible to construct a distribution table for it.

46



6.2. The S-boxes

y
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Figure 6.1.: Simple cipher.

compute the input distribution for it, for input difference a. XORing z0 with z1 gives the
o-XOR of the pair, and from the distribution we then obtain a list of possible inputs to the
function f (i.e. the position y in the diagram). Denote this set of potential inputs (to f ) by
Y, and consider one of the inputs (to the cipher), say x0. Then it must be the case that
x0 + k ∈ Y. We can then construct a set of potential keys, like so: K = {y + x0|y ∈ Y}. This
set must contain the real key k (among other wrong keys). If we repeat this experiment with
a different pair, we obtain a new set K of potential keys. We can keep a counter of how many
times each potential key has shown up so far; the correct key is the one the shows up every
time (we keep repeating the experiment until there is only one key that shows up every time).
Using the S-Box of AES and the Gold function, this process is exemplified in file dc.sage.

Note that, with the toy example of Figure 6.1, the seemingly hardest case is when f is linear,
because it is then that the set of potential keys is the largest—which in turn requires a larger
number of pairs for a successful attack. But a closer look reveals an unexpected subtlety: in
the linear case, the distribution table only contains one row, which contains all possible inputs,
and furthermore this is true for any distribution, regardless of its i-XOR. Which means the
set of possible keys will contain all keys, always5. What this means is that irrespective of the
number of (plaintext, ciphertext) pairs that are used, the set of possible keys will still be the
set of all keys. Thus one is led to the conclusion that not only a linear cipher is the hardest
case, it is, in fact impossibly hard: differential cryptanalysis will fail against any linear cipher!6

Of course a linear cipher is not a good cipher, because it is simple to distinguish from
a random function. But still, it is a surprising conclusion, that differential cryptanalysis
completely fails when applied to one. With hindsight, it makes some sense, because differential
cryptanalysis is based on exploring how input differences propagate, and with linearity, they

5 Remember that the set of possible keys is constructed by XORing one of the inputs with all the possible
inputs. If the latter always contains all bit strings of length n, then XORing all its elements with a constant
always yields a permutation of the same set of all bit strings of length n. This means the set of all possible
keys always remains constant, and indeed equal to the set of all bit strings of length n.

6 The reason this holds for any linear cipher is that any cipher is an implementation of some Boolean function,
and thus can be ǳwrittenǴ in the form of Figure 6.1. Note that even when considering a cipher that does not
start with XORing a round key, if the former is linear, then the XOR operation preserves that property. It
is this fact that allows the claim to be stated in its most general form, for any linear cipher—because if f is
linear, then Figure 6.1 can represent any linear cipher.
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always propagate in the same way, regardless of the key. It seems an analogous situation to
trying to recover the key from the ǳciphertextǴ in the ǳcipherǴ defined as E(k, m) = m; even
though the ǳcipherǴ is useless, attempting to recover the key will always result in failure.

Faced with so surprising a result, one can naturally ask what would be the hardest but
possible case. That is, what would the distribution table have to look like in order to make
a differential cryptanalysis attack possible, in the hardest case for the adversary. A similar
reasoning as applied to the linear case suggests two alternatives. We could try to weaken the
linear case, having a distribution table with two rows, one having one pair of inputs, and the
other one having the remaining pairs. Thus we get a distribution like Table 5.

o-XOR Input values
b x1, x2

b′ All except x1, x2

Table 5.: Almost linear function, for i-XOR a.

Note that x2 = x1 + a. We can compute the probability of b and b′. The probability of b

is the probability of choosing an input value x such that f (x) + f (x + a) = b. There are two
such values, viz. x1 and x2, and thus P(∆y = b | ∆x = a) = 2/2n, where n is the bit string
length. For b′ there are 2n − 2 values, and so P(∆y = b′ | ∆x = a) = (2n − 2)/2n = 1− 2/2n.
Differential cryptanalysis is a chosen plaintext attack, which means the adversary can choose
what plaintexts get encrypted; furthermore, the attack proceeds by correlating input and
output differences, which do not depend on, for example, the meaning of the plaintext. This
is why it seems reasonable to assume that all plaintext blocks are equi-probable—which is
the assumption underlying the calculation of P(∆y = b | ∆x = a) and P(∆y = b′ | ∆x = a).
Let Nb′ be the set of all input values in the second row of Table 5. When the attacker begins
trying input/output pairs, it is very likely that the inputs will belong to Nb′ ; but because
this set does not contain all strings of length n, XORing its elements with the inputs will
yield different sets of possible keys, depending on the specific input. It is the fact that this
difference exists that means that some keys will be seen more frequently than others, and
that makes it possible to guess the right key—or at least constrain the set of possible right
keys. But because this difference is small—at most two elements are different—the attacker
might be required to try a large number of pairs before there exists one (or a small number)
of keys that show up significantly more often than others. Of course if the attacker happens
to try either input x1 or x2, then the game is up—he now has a set of two possible keys,
which he can just try and see which one fits (remember it is assumed that all the details of
the cryptosystem are know to him).

Which leads us to the second alternative, which is to use a function with a distribution like
Table.
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o-XOR Input values
b half of the input values
b′ other half of the input values

Table 6.: ǳAlmost linear functionǴ, for i-XOR a.

We have P(∆y = b | ∆x = a) = P(∆y = b′ | ∆x = a) = 2n−1/2n = 1/2. In either case, the
sets of possible keys half the size of the set of all possible keys. While this is worse for Alice
and better for Mallory (the sets of possible keys are smaller than with b′ in Table 5), it at
least does not have the catastrophic weakness of o-XOR b in that same distribution.

Lastly, one can ask the converse question, viz. how such the distribution table look to make
Mallory’s job easier. The naïve answer would be to say for each o-XOR there should exist
only one input; but as seen above, that is not possible (because inputs must be grouped
pairwise). The next best for Mallory is when there exist two inputs, (x, x + a), for each
o-XOR. In such a scenario, Mallory tries one random pair, obtains two possible keys, and
disambiguates by trial and error. However, as we shall see, as the diagram becomes more
complex, the conclusions change considerably.

6.2.2 The iterated simplest case

The situation completely changes when you start iterating that construction, i.e. adding more
rounds. Before going to that example however, it must be pointed out that as depicted in
Figure 6.1, the construction has one glaring fault: because f is publicly known, the cryptana-
lyst can compute y, given z. Which means the oracle can be used to obtain a two time pad,
three time pad, etc. The construction was used like this to illustrate the simplest usage of
the o-XOR distribution, but a more realistic model would XOR the output of the last S-Box
with a round key, and that would be the output of the cipher. We shall do this in our next
construction, with two rounds, depicted in Figure 6.2.

x

k0

y

k1

z

k2

f f

Figure 6.2.: Two round simple cipher.

Observe that here the previous strategy will not work, not only because there is a final
XOR operation, but also because as there are two rounds, correlating input with output
differences is no longer a straightforward task. Let us start by studying what happens when
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f is linear—the impossibly hard case for cryptanalysis in the previous section. Say we have an
input difference ∆x = x0 + x1, which is unchanged by k0. Because f is linear, we know—with
probability 1—the output difference of the first S-Box: it is the o-XOR value of the only row
of its distribution table. That difference is unchanged by k1, which means it is equal the input
difference to the second S-Box—position y in Figure 6.2. And again because of linearity,
we know the output difference of the second S-Box (∆z because it is unchanged by k2),
which in turn means we know the output difference of the ciphertexts—all with probability
1. Knowledge of the difference at the output of the second S-Box is not very helpful—it is
always equal to ∆z. But knowing the difference at point y suggests a very simple algorithm to
recover k2: given two input/output pairs (x0, z0) and (x1, z1), compute y0 = f−1(z0 + k2) and
y1 = f−1(z1 + k2), for all values of k2. If the difference at point y is the expected value, then
the guess for k2 is a possible key—otherwise it is a wrong key and can be discarded. Except
this will not work when f is linear. To see why, let b be the o-XOR of the second S-Box, and
a its i-XOR, when the plaintext XOR is ∆x (this means that b = ∆z and a = ∆y). From the
linearity of f we have b = f (a). But this, together with the fact that f is a bijection, means
that a 6= ∆y ⇒ b 6= ∆z, which is against the hypothesis. In other words, regardless of the
value of k2, the value of the i-XOR of the second S-Box is always the same—which gives us
no way to constrain the possible values for k2. Thus, just like in the case of Figure 6.1, with
a linear cipher differential cryptanalysis does not work.

If the function f is not linear, then before worrying about generating the set of possible keys,
we must first attempt to relate ∆x with ∆y. The non-linearity of f means that difference
propagation is not deterministic: starting with an i-XOR ∆x, there are several possible values
for ∆y7. We can refine the aforementioned algorithm for guessing k2 if, for a given ∆x there
is one value of ∆y that is significantly more likely than all the others. This is a particular
case of a differential characteristic. Let us say that for a particular difference ∆x′, there is a
particular difference at point y, ∆y′ that is more likely than the alternative values. A pair of
plaintexts (with difference ∆x′) that generates at point y the difference ∆y′ is called a right
pair. Otherwise it is called a wrong pair. We expect right pairs to be more likely, because of
the high probability of the characteristic.

To recover k2, we start with maintaining a counter for each key. For each pair of plain-
text/ciphertext, we decrypt both ciphertexts with all possible keys, and compute ∆y via par-
tial decryption, like done above, and if ∆y = ∆y′, then we increment the counter for the key
used. Because we expect right pairs to occur often, the right key counter will also be incre-
mented often. But if a wrong pair has occurred, then partially decrypting with the right key
is unlikely to cause ∆y = ∆y′ (it would only happen by chance)—which means the counter
for the right key will likely not be incremented. And if, for a right pair, the decryption is

7 In terms of distribution tables what this means is that there is, for a given i-XOR, more than one row in the
corresponding table.
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made using a wrong subkey, then the bytes entering the ǳinverse S-BoxǴ ( f−1) can essentially
be considered random, which means it is also unlikely the previous equality will hold. All of
this means that, after enough pairs have been tried, there will be one key with the highest
counter, which will very likely be the correct key.

In section 6.2.1 the main concern was to make the size of the sets of possible keys as small
as possible. Here that is at most, an ancillary concern. And that makes sense because, as
previously mentioned, we assume the S-Boxes to be of realistic size, which means they are
small, and that the distribution tables and sets of possible keys keys are always manageable by
computers. The main concern now has been to choose a difference at a specific point which is
more likely than the other possibilities. It is this that makes the attack possible. Which means
that the hardest case for Mallory is when all differences have the same probability. The best
case (for Alice) seems to be when for each o-XOR, there is only one possible input pair—this
makes all differential characteristics have approximately the same probability, which means
the above algorithm will not work, because all the counters will be incremented more or less
the same number of times.

6.2.3 Differential Cryptanalysis on a full SP-network

Before tackling a full blown Substitution/Permutation-network, the first thing to do is to
add one more round to Figure 6.2, and understand how that changes the calculation of
probabilities. There, to calculate the i-XOR of the second round (o-XOR of first round) we
just had to look at the distribution table for S-Box of the first round, and count the number
of inputs that yielded the desired output. Here it is slightly more complicated.

x

k0

w1

k1

w2

k2

z

k3

f f f

Figure 6.3.: Three round simple cipher.

If the attack is to focus on the last round again, then we must calculate the probability of
∆w2 having a specific value, from a given specific value of ∆x. The standard way of doing
this is to assume the differentials between two successive rounds to be independent, thus the
probability of observing both is the product of their probability. This assumption is not
strictly correct, but it works well in practice—more on this shall be said shortly.

To give a concrete example, suppose f is the S-Box of the Mini-AES, and consider again
Table 4. In that table, built for fixed i-XOR 1011, for half of the input values the o-XOR
is 0010. We want high probability differential characteristics, so we take ∆x = 1011, which
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means that P(∆w1 = 0010 | ∆x = 1011) = 1/2. We now construct the distribution table for
i-XOR 0010, to see which o-XOR is more likely. The result is in Table 7.

o-XOR Input values
0011 0000, 0010
0101 0001, 0011, 1000, 1010, 1100, 1110
0110 1001, 1011
0111 0101, 0111
1001 0100, 0110
1110 1101, 1111

Table 7.: o-XOR distribution for fixed i-XOR 0010.

Inspecting the table yields immediately that P(∆w2 = 0101 | ∆w1 = 0010) = 6/16 = 3/8.
Multiplying both values yields that P(∆w2 = 0101 | ∆x = 1011) = 1/2 × 3/8 = 3/16. To
see why we can multiply the probabilities, note that for each input value that, in the first
S-Box, yields an o-XOR of 0010, there are 6 input values for the second S-Box. As there are 8

favourable input values for the first S-Box, the number of favourable cases for the differential
is 8 × 6 = 48; by a similar reasoning the number of possible cases is 16 × 16 = 256, and
48/256 = 3/16. This is where the assumption of independence manifests itself: in reality,
the particular input bits to the second S-Box depend on the particular input bits to the first
S-Box, as well as of the value of k1, thus they are not independent. Nevertheless, because
in differential cryptanalysis the input to the cipher is assumed random, and rounds keys are
usually generated to be ǳas random as possibleǴ, the assumption of independence works well
in practice.

Compare what would happen if f had been an APNL function: all the trails that lead to
∆w2 would have probability 2/16 × 2/16 = 1/64, a value twelve times lower! Thus we now
have a high probability estimate for the differential (∆x = 1011, ∆w2 = 0101), and so are
now in conditions of using the algorithm of section 6.2.2 to recover the key.

The scenario with a full SP-network is very similar, the big difference being that there is
more than S-Box per round, so the characteristics can be parallel, and in the last round, not
all S-Boxes might be affected, which means the attack recovers key bits (instead of the full
key). See Figure 6.48; all S-Boxes implement the Mini-AES S-Box (the algorithm is the same
if different S-Boxes were used, only more distribution tables would have to be constructed).
To present the argument in its fullest generality, suppose that the diffusion is non-linear,
meaning that an input difference that affects only S-Box S11 in the first round can generate
input differences in (say) S-Boxes S21 and S22 (cf. (Heys, 2002, Figure 5, p. 24)). Suppose
further that those second round differences propagate only to S33 in the third round (this is
just to simplify the calculations).

8 Note that the last round has no diffusion; this is because as there are no more S-Boxes after that, no mixture
is needed (it would not add anything to security).
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Figure 6.4.: Full SP-network. The blank rectangles represent diffusion.

We will use the following notation: ∆x21 refers to the input difference of S21; the output
difference of for example S33 is denoted by ∆z33. The input difference to round 1 is ∆X1 and
the output difference is ∆Z1. It follows that ∆x = ∆X1 = ∆x11∆x12∆x13 and ∆z = ∆Z3 =

∆z31∆z32∆z33, where juxtaposition means concatenation.
Let ∆X1 = 1011 0000 0000. Thus ∆z11 = 0010 with probability 1/2, and ∆z12 = ∆z13 =

0000. Suppose that through diffusion we have ∆X2 = ∆x21∆x22∆x23 = 1100 1110 0000, i.e.
only S21 and S22 are affected. We still have

P(∆X2 = 1100 1110 0000 | ∆X1 = 1011 0000 0000) = 1/2

Now we construct the distribution tables for i-XOR’s 1100 and 1110.

o-XOR Input values
0001 0100, 1000
0100 0111, 1011
0101 0101, 1001
0110 0011, 1111
1011 0000, 1100
1101 0001, 1101, 0010, 1110, 0110, 1010

Table 8.: o-XOR distribution for fixed i-XOR 1100.

As done for the case of Figure 6.3, we want to choose highly likely o-XOR’s, so we chose
o-XOR 1101 for S21 and 1000 for S22. With a similar reasoning as to what was done for that
figure, we have

P(∆Z2 = 1101 1000 0000 | ∆X2 = 1100 1110 0000) = 6/16 × 6/16 = 9/64
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o-XOR Input values
0010 0111, 1001
0011 0001, 1111, 0101, 1011
0100 0100, 1010
1000 0010, 1100, 0011, 1101, 0110, 1000
1110 0000, 1110

Table 9.: o-XOR distribution for fixed i-XOR 1110.

And thus

P(∆Z2 = 1101 1000 0000 | ∆X1 = 1011 0000 0000) = 1/2 × 9/64 = 9/128

If the diffusion is such that this difference, when propagated to round 3, will only affect,
say S33, then we now have a characteristic which can be exploited, like in section 6.2.2, to
recover the bits of k3 that are XORed with this S-Box.

Note that the assumptions on the effects of the diffusion steps do not make the attack any
less general: for example if the propagation of Z1 to round 2 led to other differences, in/or
other S-Boxes, then the only change would be to calculate the distribution tables for those
differences and S-Boxes.

6.3 applications to the cipher

As explained in chapter 4, with the goal of maximising the cipher’s resistance to differential
cryptanalysis, its S-Boxes implement almost perfect nonlinear (APNL) functions. These are
defined as follows Berger and Canteaut (2006).

Definition 6.3.1 (Almost Perfect Nonlinear Function). Let f be a bijective map from F
n
2 to

F
n
2 , and let

δ( f ) = max
a 6=0,b

#{x ∈ F
n
2 | f (x) + f (x + a) = b}

If δ( f ) = 2, then f is said to be an almost perfect nonlinear function.

This is basically a more formal way of saying that for a given Boolean function f , it is APNL
if and only if its distribution table, for any fixed i-XOR, has no more than two elements per
row. This means that for any i-XOR, the probability of obtaining any o-XOR is always the
same—and as explained in the previous section, this is the hardest scenario for differential
cryptanalysis.

Currently, as section 4.4 states, the only criteria for the choice of the APNL function to be
used was simplicity. This choice in practice ment choosing an exponent for a power function
because, as mentioned in (Carlet, 2009, §3.1.7), «Until recently, the only known examples of
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APN[L] functions were [...] power functions x → xd». Some of the possible values for d are
the following (ibid.):

• d = 2n − 2, n odd.

• d = 2i + 1, gcd(i, n) = 1 (Gold function).

• d = 22i − 2i + 1, with gcd(i, n) = 1 (Kasami function).

• d = 2
4n
5 + 2

3n
5 + 2

2n
5 + 2

n
5 − 1, with n divisible by 5.

The simplest choice is an exponent verifying the condition of the Gold functions, viz.
gcd(i, n) = 1—and the smallest possible i is 3 (which is coprime to both 17 and 19). This
choice makes sense so far, because in what resistance to differential cryptanalysis is concerned,
all APNL functions are equivalent (because they all have uniformly distributed o-XOR’s).
This is not necessarily the case when algebraic cryptanalysis is considered, as discussed in
chapter 8.

The round function, as mentioned in chapter 4, uses APNL functions. To study its resistance
to differential cryptanalysis, the first question asked was: if a Boolean function is constructed
with parallel APNL S-Boxes, is it also APNL? And if not, are there any constraints that can
be placed (e.g. in the diffusion mechanism) to make them so? Unfortunately, the answer to
the first question is no, and furthermore there does not seem to exist an easy way to make
the answer to the second question be yes. To see why, let f and f ′ be two APNL functions,
and let x, a and b be an input, an input difference and an output difference for f ; and
respectively x′, a′ and b′ for f ′. Let F = f || f , where || denotes concatenation (note that it
takes precedence over addition). We have F(x || x′) = f (x) || f (x′), f (x) + f (x + a) = b and
f ′(x′) + f ′(x′ + a′) = b′. Furthermore,

F(x || x′ + a || a′)

= F
[

(x + a) || (x′ + a′)
]

= f (x + a) || f ′(x′ + a′)

Thus F(x || x′) + F(x || x′ + a || a′) = b || b′. If F was APNL, then the only input
pair to produce an output difference of b || b′ should be (x || x′, (x + a) || (x′ + a′)). But
this is not the case, because the pair (x || (x′ + a′), (x + a) || x′) also produces an output
difference of b || b′, as can be readily verified. Adding more ǳsmallǴ functions, the resulting
ǳbigǴ function will still not be APNL: not only there exists the extra pair resulting from the
first two functions; but as more functions are concatenated, more extra pairs can be created.

Reasoning by induction, it can be shown that this result generalises to the concatenation
of any number of ǳsmallǴ APNL functions: the resulting ǳbigǴ function will not be APNL.
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And this seems to be an implicit characteristic of the construction; or to put it another way,
it is not at all obvious how to add something to the scheme (diffusion for example) in such a
way that the ǳbigǴ function would be APNL.

So another strategy is required to analyse the round’s resistance to differential cryptanalysis.
This attack is harder to implement the more uniform the probability of the differential char-
acteristics is. The probability of one such characteristic is given by a product like ε1ε2 · · · εn,
where 0 < ε i < 1. This product is largest when the ε i are each as large as possible, and the
number of ε i is as small as possible. Remember that for the 19-bit S-Box, each of the pos-
sible o-XOR’s has a probability of 1/218, and for the 17-bit ones 1/216. Thus, assuming r

rounds, the largest probability for a trail is (1/216)r. As for the smallest, because changes in
the round input cause on average for half of the output bits to change, it seems reasonable to
assume that a characteristic will affect, on average, seven S-Boxes. Accordingly the smallest
probability for a characteristic is approximated as

[

(

1

218

)(

1

216

)7
]r

In SAGE, assuming 3 rounds, we obtain the following numbers:

1 sage: r=3
2 sage: (1/2.0^16)^r - ((1/2.0^18)*(1/2.0^16)^7)^r
3 3.55271367880050e-15
4 sage: (1/2.0^16)^r - ((1/2.0^18)*(1/2.0^16)^14)^r
5 3.55271367880050e-15

Note that even for a characteristic in which all fourteen 17-bit S-Boxes (plus the 19-bit
one) are affected, the probability difference is so small that is it remains the same, up to
the displayed precision—cf. lines 4–5 of the above snippet. As far as the author current
understanding goes, this probability difference—with only three rounds—seems small enough
to pronounce the design immune to differential cryptanalysis.

6.4 conclusions

This chapter focuses on the only nonlinear component of the cipher: the S-Boxes. In par-
ticular, it focuses on a powerful attack, differential cryptanalysis, the gist of which consists
of exploring a certain type of weakness in the design of said boxes.

Differential cryptanalysis is described at length, and that description serves as the basis
from which it is argued that the current round design is—if not theoretically then at least in
practice—immune to differential cryptanalysis.
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6.4. Conclusions

This chapter ends with some remarks on the analysis of differential cryptanalysis it de-
scribes:

• The hypothetical functions of Tables 5 and 6 have been assumed to exist without proof.
While correct, this criticism is ameliorated by two remarks: first, there seems to be
nothing in the definition of both Boolean functions and the o-XOR distribution table
that prevents functions with such tables from existing; and second, even if that were
the case, those examples are only given as aid to better transmit the intuition behind
the powerful attack of differential cryptanalysis.

• The construction of the characteristics is easier when using tables like (Heys, 2002,
Table 7, p. 21); however this was not done here because it makes explaining the attack
harder.
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7
OTHER ATTACKS

The great thing about attackers is that there are so
many to choose from!

Daniel J. Bernstein

After having, in the previous chapter, described at some length the nonlinear constructions
used in the cipher, and the attack of differential cryptanalysis, in this section two other attacks
are described: linear cryptanalysis and algebraic cryptanalysis. Note that both of these have
variants—as does differential cryptanalysis—here we just sketch the attacks, to give a more
detailed description of what has to be done in assessing the cipher’s security.

7.1 linear cryptanalysis

Unlike differential cryptanalysis, linear cryptanalysis is a known plaintext attack, first pub-
lished in Matsui (1993). But just like its differential counterpart, it is also focused on the
S-Boxes. The overview given here again draws on Heys (2002). Consider the variation of
Figure 6.1 shown in Figure 7.1, and again suppose that f implements the Mini-AES S-Box
(Phan (2002), 4 bits of input and output).

x

k

y
zf

Figure 7.1.: Example target of linear cryptanalysis.
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7.1. Linear Cryptanalysis

Let x = x1x2x3x4 and y = y1y2y3y4. The objective of linear cryptanalysis is to construct
expressions Eq. 9, which are either very likely, or very unlikely (remember that + is addition
in F2, i.e. XORing).

x1 + x2 + x3 + x4 + y1 + y2 + y3 + y4 = 0 (9)

Some of the terms (but not all) can be 0. If all the bits were chosen randomly (independ-
ently), Eq. 9 would hold with probability exactly 1/2. But if it holds with some probability
pL 6= 1/2, then that can be exploited to retrieve bits of the last round key. But first, the 0

on the right hand side must be explained. Linear cryptanalysis uses linear approximations
between some input bits, some output bits, and some key bits. It is these key bits that are
implicitly represented by the 0. To understand what this means, suppose the actual key bits
the 0 is representing do XOR to 0. Then the probability bias of Eq. 9 is pL − 1/2. Now sup-
pose the converse is true, viz. those bits XOR to 1. If we replace 0 with 1 in Eq. 9, we obtain
another equation which holds with probability 1 − pL. This means that the bias of the new
equation is (1 − pL)− 1/2 = 1/2 − pL. I.e. the bias has only changed in sign, but its abso-
lute value, |pL − 1/2| remains the same. Because linear cryptanalysis only depends on the
absolute value of the deviation (ǳeither very likely, or very unlikelyǴ), we can fix the right
hand side of Eq. 9 to 0, and work from there.

Suppose we have one such linear approximation for the ǳcipherǴ of Figure 7.1, with a large
bias (ignore for the moment how would one search for such expressions). Because it is a
known plaintext attack, suppose also we have n pairs (plaintext, ciphertext). To obtain the
key, for each pair, decrypt the ciphertext with all possible keys, to obtain a possible output
of the S-Box (y in the diagram), and then see if that value, together with the plaintext bits,
verifies the linear approximation. If the probability of that expression was 1/2, it would be
expected that approximately n/2 of the n pairs would verify it, and the other half would not.
But because of the large bias, there must be one key value for which the linear expression is
either verified for a number distant (either above or below) from n/2, or fails for a number
distant (idem.) from n/2. In other words, the possible key for which the hits is farthest from
n/2, in absolute value, is with high probability the correct key.

Note that the particular case of when f is linear—which was impossibly difficult for differ-
ential cryptanalysis—here is, in fact, the easiest case: indeed it just means that there exists
a trivial linear ǳapproximationǴ, which holds with probability 1 (i.e. it has a bias of 1/2, the
highest possible).

That was the simplest case. If we now proceed to a more complicated scenario, viz. having
more than one round, we need a way to combine different linear approximations. This is done
with the Piling-Up Principle ((Heys, 2002, §3.2), (Matsui, 1993, §5, Lemma 3)).
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7.1. Linear Cryptanalysis

x

k0 k1

y

k2

f f

Figure 7.2.: Two round example of linear cryptanalysis.

Consider Figure 7.2 ( f is again Mini-AES). We use the following notation: x is the plaintext,
xi is the bit in position i of the plaintext (starting at 0); similarly for y and yi and the
ciphertext. The input to the left S-Box is u1, and u1,i is the bit in position i; the output
of that S-Box is v1, and a second subscript is similarly added to reference a particular bit
within it. For the right S-Box, input is u2, output v2, and a similar observation for the second
subscript applies. Second subscripts will also be used to refer to particular bits of the round
keys.

For the first S-Box we will use u1,3 = v1,1 + v1,2 + v1,3 with probability 14/16. For the
second S-Box, u2,1 + u2,2 + u2,3 = v2,1 + v2,3, with probability 4/16. For details on how these
expressions were found, see A.5. To see how these expressions can be combined, notice that
because of the properties of the XOR, we can re-write them as:







u1,3 + v1,1 + v1,2 + v1,3 = 0, with probability 14/16

u2,1 + u2,2 + u2,3 + v2,1 + v2,3 = 0, with probability 4/16
(10)

Notice also that we can define random variables for (the left hand side of) each equation.
So let X1 be a random variable that represents the left hand side of the first equation, and
similarly X2 for the second one. Thus P(X1 = 0) = 14/16 and P(X2 = 0) = 4/16. Then
we can ask what is the probability of X1 + X2 = 0 (this is useful because it will lead to a
combination of both linear expressions, as shall be shortly seen). Remember the addition is
done in F2, so that expression represents the probability of X1 and X2 having equal outputs.
Calculating P(X1 + X2) is done with the aforementioned Piling-Up Principle.

Theorem 7.1.1 (Piling-Up Principle). Let X1, . . . , Xn be independent binary linear random
variables. Furthermore, let P(X1 = 0) = 1/2 + ε1, . . . , P(Xn = 0) = 1/2 + εn. Then we have

P(X1 + · · ·+ Xn = 0) = 1/2 + 2n−1
n

∏
i=1

ε i

Equivalently, ε1,2,...n = 2n−1 ∏
n
i=1 ε i, where ε1,2,...n is the probability bias of the equation

X1 + · · ·+ Xn = 0.
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7.2. Algebraic Cryptanalysis and SAT

Going back to the linear expressions of Eq. 10, we have that X2 = u2,1 + u2,2 + u2,3 + v2,1 +

v2,3, but this is not useful. The reason is that we want to relate the output of the second
S-Box (v2,i) with the input to the cipher. To do this, we can go ǳbackwardsǴ, using bits from
the fixed round key k1 to re-write the input to the second S-Box like so:

X2 = v1,1 + k1,1 + v1,2 + k1,2 + v1,3 + k1,3 + v2,1 + v2,3

Remember X1 = u1,3 + v1,1 + v1,2 + v1,3. XORing both we get

X1 + X2 = u1,3 + k1,1 + k1,2 + k1,3 + v2,1 + v2,3

This is close, but still not good enough, because we want an expression with the plaintext
bits. But we can replace u1,3 with x3 + k0,3 (again observe k0 is fixed), obtaining

X1 + X2 = x3 + k0,3 + k1,1 + k1,2 + k1,3 + v2,1 + v2,3 (11)

Notice the substitutions do not affect the probabilities of the random variables, because
they are, in a sense, ǳdeterministicǴ: they do not add or remove to the uncertainty of the
expression. The Piling-Up Principle now yields that P(X1 +X2) = 1/2+ 2× (14/16− 1/2)×

(4/16 − 1/2) = 5/16, with ε1,2 = −3/16. If the key bits in Eq. 11 XOR to 0, the equation
x3 + v2,1 + v2,3 = 0 has a probability bias of −3/16; if they XOR to 1 the bias is 3/16. Thus
we have a linear expression, relating input bits to output bits of the second S-Box; we can
now proceed as initially to recover the corresponding bits of k2—viz. k2,1 and k2,3.

To generalise this method to a fully-fledged SP-network, there is an additional step that
is required, which is to track how the changed bits are spread by the diffusion mechanism,
similarly to that was done in §6.2.3.

7.2 algebraic cryptanalysis and sat

Algebraic cryptanalysis can be summed up as consisting of two steps: the first is to «convert
the cipher into a system of polynomial equations», and second to «solve the system of equations
and obtain from the solution the secret key of the cipher» (Bard, 2007, §2.3.1). Rijndael’s
simplicity of design makes it (at least without hindsight) potentially vulnerable to this new
type of attack. Representing a cipher as a set of equations can be done via Multivariate
Quadratic equations (Courtois and Pieprzyk, 2002). But the fact that it is generally easier to
solve linear systems, rather than quadratic ones, lead to the development of relinearization
(Kipnis and Shamir, 1999), and subsequent improvements named XL (Courtois et al., 2000)
and XSL (Courtois and Pieprzyk, 2002). As far as the author could research, the strength
and efficiency of this attack is still unknown.
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7.3. Conclusions

The above equations can be seen from a different perspective, viz. as a satisfiability problem
(shortened to just SAT). Very roughly, the goal is, given a Boolean formula, either find a
valoration that makes it true, or prove that none exists. What makes this approach promising
is that the equations that mimic ciphers tend to have an enormous number of variables,
which makes their manipulation cumbersome, to say the least. But by leveraging the power
of modern SAT solvers, the problem becomes much more tractable (Massacci and Marraro,
2000). An example of the result of applying this technique was the discovery of several weak
keys of a derivative of the IDEA cipher (Lafitte et al., 2014).

7.3 conclusions

This chapter describes two other powerful attacks against symmetric ciphers, viz. linear and
algebraic cryptanalysis. Perhaps the most surprising observation that can be made here is
that, for a cipher intended to have a simple algebraic description, the role of algebraic attacks
against it in the study that has been done has been minuscule indeed. Discussion of this—very
pertinent—point shall be taken in chapter 8.

About linear cryptanalysis, it must be pointed out that a more rigorous analysis requires the
use of spectral techniques—namely the Walsh-Hadamard transform and correlation matrices.
Such a path was not pursued however, because doing so would required far more time than
what was available for this work.
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8
CONCLUSIONS AND FUTURE WORK

SchneierǶs Law: any person can invent a security system so
clever that she or he canǶt think of how to break it.

Bruce Schneier et al.

The first principle is that you must not fool yourself—and
you are the easiest person to fool.

Richard P. Feynman

8.1 conclusions

The work heretofore presented failed to uncover any weakness that would make the proposed
round structure unsuitable to be used as a basis for a realistic cipher. At least in theory: even
a few iterations seem to make differential cryptanalysis all but infeasible, and the components
used seem to lend themselves to efficient implementations. But even on realm of theory alone,
there is still a sizeable amount of work to be done, as will be described in §8.2. The rest of
this section is essentially an elaborated comment contrasting the initial goals and motivations
with what was achieved and learned throughout the development of this work.

Besides pure research interest per se, one of the motivations was to take advantage of
the algebraic descriptions to try to provide stronger rationale for the security of the final
cryptographic scheme. It is too early to tell if this was achieved. But the path crossed so far
suggests it is indeed possible to do better than to design something that seems ǳcomplicated
enoughǴ to be secure. That being said, the author cannot ǳshake the feelingǴ that for all
its power, mathematics can only take one so far. For example, on the choice of the round
constants, why a Hamming weight of 128? Can there be better constants (stronger diffusion)?

For more details on Schneier’s Law, see https://www.schneier.com/blog/archives/2011/04/schneiers_
law.html
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8.2. Prospect for future work

With greater Hamming weight? Or smaller? Or in the layout of the S-Boxes, is any difference
(i.e. does the layout matter at all)? If so, then how to establish which one is the more suitable?
Currently these and other questions have been answered with a combination of intuition and
æsthetics. Ascertaining just how far mathematics can take us in answering these and other
questions is perhaps a suitable way to characterise the direction towards which future work
must be steered.

8.2 prospect for future work

In more concrete steps than those outlined in the previous paragraph, the two more imme-
diate next steps are to see how the construction resists linear cryptanalysis and algebraic
cryptanalysis. Concerning the former, the theory of Walsh-Hadamard transforms must be
brought to bear on the cipher, to see how it holds against it. Regarding the latter, it is
a much newer attack, that did not even exist when Rijndael was proposed. Therefore it is
still essentially an open question of how to design a cipher that is resistant to it. The most
obvious way of attacking this problem seems to be to focus on the APNL functions: while
any such function is equally (well) resistant to differential cryptanalysis, such may not be the
case when algebraic attacks are considered. Which choice of function makes relinearization
harder, or yields a greater increase in the number of variables of the resulting system, are the
questions that must be tackled next.

After that, two related steps: on the one hand, see if the rounds symmetric layout can lead
to an attack, and if so, how to defend against it; related to the latter, on the other hand, is
the design of the key schedule, which can be used to compensate for the round’s symmetry.
Following that, study if are any improvements possible to the round constants. In particular,
if there are more suitable Hamming weights for the bitstrings. Also analyse if, with the current
constants, there exists some bias in the number of bits that are flipped in the output1. It
would also be of interest to see what insights the Wide Trail Strategy (Daemen and Rijmen,
2002, §9) can provide, when applied to the current design.

Lastly, investigate implementation-related issues, namely the most pressing one: can a
construction with 257 bits be implemented efficiently on current architectures? And while we
are on the subject of implementation, an attack that depends crucially on the implementation
(of the cipher in general and of the S-Boxes in particular) is Daniel Bernstein’s cache timing
attack Bernstein (2004). How—if at all possible—to mitigate that attack, in a cipher which
security depends strongly on its S-Boxes, is a question also worthwhile looking into.

1 Remember that with the current design, after ten thousand runs, and with a varying number of input changes,
the output changed, on average, 128 bits. For a truly random process one would hope to see 128 and 129 bit
changes, approximately the same number of times.
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A
SAGE MATHEMATICS

SAGE (ǳSystem for Algebra and Geometry ExperimentationǴ, also known as SageMath) «is
mathematical software with features covering many aspects of mathematics, including algebra,
combinatorics, numerical mathematics, number theory, and calculus» Wikipedia (d). It is a
free and open software system (released under the GNU General Public License) that is built
«on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima,
GAP, FLINT, R and many more» and that provides «Access their combined power through a
common, Python-based language» (Team, b). Thus SAGE can be seen as providing a superset
of the Python programming language. It should be stressed that ǳPythonǴ here refers to
version 2 of the language (Team, a), with which the reader is assumed to be familiarised.

In this chapter a very quick introduction is given to SAGE’s functionality that this most
relies on.

a.1 terminology and python facts

Lists are mutable tuples. They are delimited by square brackets, and its elements separated
by commas. Indexing a list L like L[a:b] means the sub-list that begins with element L[a],
and ends with the element immediately before L[b]. To select a sub-list of 3 elements of L,
beginning with L[a], you do L[a:a+3]. Adding (+) two lists concatenates their elements.
E.g. [a, b]+[c, d] yields the list [a, b, c, d].

Method, function and procedure are used interchangeably. The same applies to list and
array.

a.2 basics

In the present the SAGE system has been primarily useful as a way to do calculations over
finite fields, in particular Galois fields. They are defined by GF(2) or FiniteField(2), for
the finite field with two elements. The ring of polynomials with coefficients in F2, with
indeterminate X, is defined as:
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A.3. The CRT matrix

1 GF2=GF(2)
2 P_GF2.<X> = PolynomialRing(GF2)

To define a ring with a given modulus, do:

1 big_modulus = X^257+1
2 R.<x> = P_GF2.quotient_ring(big_modulus)

The polynomials that belong to R will have indeterminate x. To compute the inverse (in
R) of one of such polynomial, say poly, do (note that the inverse might not exist if the ring’s
modulus is not irreducible):

1 inv_poly = P_GF2(list(poly)).inverse_mod(big_modulus)

This also shows that (at least in some cases) you can change the indeterminate of a poly-
nomial: P_GF2(list(poly)) returns poly, but with the indeterminate changed from x to X,
the indeterminate of P_GF2. The list function, applied to a polynomial returns a list of its
coefficients (including the zeros), the left-most being the independent term. It can also be
used as poly.list().

But the syntax can vary, which is something of a double-edged sword. For example, Code
Snippet A.1 shows one way of testing if the small moduli of the CRT isomorphism are irre-
ducible (cf. §5).

a.3 the CRT matrix

In this section we will walk through the code necessary to construct the CRT matrix (Eq.
8, §5.2). The full code is available in the file crtmatrix_test.sage. Before we begin, the
reader might wish to skim over §5.2 again, as we will associate the code to the corresponding
steps, laid therein, that result in the CRT matrix. The fundamental excerpt is shown in
snippet A.2.

We will work from the bottom up. The fill257 method receives a polynomial object and
straightforwardly returns its coefficient list (leftmost entry is the independent term)—padded
with zeros if degree is less than 256, so that the returned list is always of length 257.

The mult_and_expand method receives a polynomial, and multiplies it by x0, x1, …, x15

(modulo x257 + 1). It places each of these polynomials in an array, and then the fill257
function replaces each of them with (a sub-array) of its respective coefficients. Thus, it returns
an array of length 16, in which each of the entries is itself an array, of length 257.
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A.3. The CRT matrix

1 sage: R.<x> = PolynomialRing(GF(2),'x')
2 sage: big_modulus = x^257+1
3 sage: F = factor(big_modulus)
4 sage: small_moduli = map(lambda (a,b) : a, list(F))
5 sage: for i in small_moduli: i.is_irreducible()

Code Snippet A.1: Using SAGE to show the small moduli are irreducible (it outputs True 17 times).

1 def get_crt_matrix():
2 global b_crt
3 BB = reduce(lambda a,b: a + b, [mult_and_expand(b_crt[i+1]) for i in range(16)],
4 [fill257(b_crt[0])])
5 CRT = matrix(BB)
6 return CRT
7

8 def mult_and_expand(e):
9 xpow16 = [x^k for k in range(16)]

10 u = map(lambda a: (a*e) % big_modulus, xpow16)
11 u = map(fill257,u)
12 return u
13

14 def fill257(p):
15 d = 256 - p.degree()
16 c = p.coeffs()
17 if d>0:
18 return c + [0 for k in range(d)]
19 return c

Code Snippet A.2: Using SAGE to construct the CRT matrix. File crtmatrix_test.sage.

Now we get to the get_crt_matrix, where the ǳbulkǴ of the logic is. The list comprehen-
sion [mult_and_expand(b_crt[i+1]) for i in range(16)] produces an array of length
16, where each of its entries are the length 16 array of arrays returned by mult_and_expand,
described in the previous paragraph. Let’s deconstruct this expression.

For i=0, we have mult_and_expand(b_crt[1]), which yields in a first step a list of polyno-
mials like so: [e1, xe1, x2e1, . . . , x15e1], and on a second step another list obtained by replacing
each of the polynomials with their respective coefficients. I.e. we obtain:
[[e1,0, · · · , e1,256], [(xe1)0, · · · , (xe1)256], . . . , [(x15e1)0, · · · , (x15e1)256]]. This is the first item of
the list comprehension shown above. Notice that it already resembles lines 2 through 17 of
the CRT matrix (p. 38). Iterating the list comprehension for e2, . . . , e16, we obtain similar
results, which will be the remaining elements of the array resulting from the list compre-
hension. The (list) adding operation done by the lambda function will concatenate all such
elements, yielding an array of length 256, in which each entry is an array of length 257, which
correspond to CRT matrix lines 2–257. Line 1 is given by [fill257(b_crt[0])], which is
prepended to the result by Python’s reduce function.
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A.4. Simple differential cryptanalysis

To test this construction, we generate a random 257 bitstring, which we shall interpret
as containing the sequence of (the coefficients of the) polynomials in the small rings, then
use the CRT matrix to compute the corresponding polynomial in the big ring R, and test
that this is indeed the correct one by dividing it by the different moduli, and comparing the
remainders with the polynomials in the small rings that we had randomly generated initially.
The relevant code is in snippet A.3.

1 a = fill257(R.random_element(256))
2 big_coeffs = vector(a) * crt_matrix
3 big = coeffs2poly(list(big_coeffs))
4 small_polys = [[ a[0] ]]
5 for i in range(1, 256, 16):
6 small_polys = small_polys + [ a[i:i+16] ]
7

8 if big % small_moduli[0] == coeffs2poly(small_polys[0]):
9 print("True 0!")

10 if big % small_moduli[1] == coeffs2poly(small_polys[1]):
11 print("True 1!")

Code Snippet A.3: Using SAGE to test the CRT matrix. File crtmatrix_test.sage.

a.4 simple differential cryptanalysis

The simplest case of the differential cryptanalysis attack—the one against a construction
like Figure 6.1—is implemented in file dc.sage. Although the implementation is generic,
because it receives as a parameter the function to which the attack is to be applied, in this
case there were two implemented functions: the S-Boxes of AES and the Gold function. The
first step in this attack is to construct a distribution table for a fixed i-XOR (because of the
simplicity of the construction any value will do, we can just choose randomly). The distribu-
tion table is created as a Python dictionary—d[o-XOR]=[list of inputs]—in the method
create_distribution(). The code in Snippet A.4 simply generates random values, the dis-
tribution for those values’ i-XOR, and from that a set of possible keys (crypto_analyser).
Then the process is iterated, removing wrong keys from that set, until there is only one left
(cryptanalyse()). Remember that differential cryptanalysis is a chosen plaintext, so an
oracle() is required, to produce the (plaintext, ciphertext) pairs chosen by the attacker.

Note that it can correctly determine the key the oracle is using, when the S-Box function F
is either the AES one, or the Gold one. But it completely fails when it is linear; and moreover,
the set of possible keys, after cryptanalysis, in this latter case, is the set of all 256 bitstrings
of length 8, just as predicted in §6.2.1.
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A.5. Simple (partial) linear cryptanalysis

a.5 simple (partial) linear cryptanalysis

Using Mini-AES as an example, the function create_linexp_table(), in file miniAES.sage,
illustrates one process of finding linear expressions for that S-Box. If its input and output
are denoted by x1x2x3x4 and y1y2y3y4 respectively, then the goal is calculate the probability
of expressions like the following, where some terms may be 0. See §7.1 for details.

x1 + x2 + x3 + x4 + y1 + y2 + y3 + y4 = 0 (12)

The number of possible combinations of the inputs bits is given by the powerset of {1, 2, 3, 4},
minus the empty set; and similarly for the output bits. Because the implementation will use
arrays, which are indexed starting at 0, the script actually uses the powerset of {0, 1, 2, 3}.
A (double) dictionary d is used to store the different linear expressions, as well as a counter
for how often they are verified. The key is a string containing the indexes of the nonzero bits
(in our particular scenario this causes no ambiguity). Thus d=['01']['23'] corresponds to
x1 + x2 + y3 + y4 = 0. For each entry in the dictionary a counter is kept, that is incremented
whenever there is an input/output pair which verifies the expression. The algorithm simply
runs over all inputs, and for each tests all expressions. See Code Snippet A.5.
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A.5. Simple (partial) linear cryptanalysis

1 # set here the function to be used by oracle
2 # eg square, gold_f9, sub_bytes
3 F = square
4

5 def crypto_analyser(cipher):
6 # generate two input
7 input1 = "{:0>8b}".format(randint(0, 255))
8 input2 = "{:0>8b}".format(randint(0, 255))
9 i_xor = xor(input1, input2)

10

11 output1 = cipher(input1)
12 output2 = cipher(input2)
13 o_xor = xor(output1, output2)
14

15 d = create_distribution(F, i_xor)
16

17 possible_inputs = d[o_xor]
18 possible_keys = [ xor(input1, elem) for elem in possible_inputs ]
19

20 return possible_keys
21

22 def oracle(byte):
23 key = "10101101"
24 return F(xor(byte, key))
25

26 def cryptanalyse():
27 keys = crypto_analyser(oracle)
28 aux = crypto_analyser(oracle)
29 for i in keys:
30 if aux.count(i) == 0:
31 keys.remove(i)
32

33 print(keys)
34 print(len(keys))

Code Snippet A.4: Using SAGE to do differential cryptanalysis.
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A.5. Simple (partial) linear cryptanalysis

1 def create_linexp_table(f):
2 # powerset minus empty set
3 isubs = [x for x in powerset([0 .. 3])][1:]
4 osubs = [x for x in powerset([0 .. 3])][1:]
5

6 d = {}
7 for c in range(16):
8 x = "{:0>4b}".format(c)
9 y = f(x)

10 for i in isubs:
11 if not int_array2str(i) in d:
12 d[int_array2str(i)] = {}
13 for j in osubs:
14 if not int_array2str(j) in d[int_array2str(i)]:
15 d[int_array2str(i)][int_array2str(j)] = 0
16

17 isum = reduce(operator.add, [int(x[idx]) for idx in i])
18 osum = reduce(operator.add, [int(y[idx]) for idx in j])
19

20 if ((isum + osum) % 2)==0:
21 d[int_array2str(i)][int_array2str(j)] = \
22 d[int_array2str(i)][int_array2str(j)] + 1
23 return d

Code Snippet A.5: Using SAGE to do compute linear expressions used for linear cryptanalysis.
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B
CODES, MATRICES AND DIFFUSION

b.1 coding theory

The acronym ǳMDSǴ originates from coding theory, so in order to explain what an ǳMDS
matrixǴ is, we first need to introduce some notions from said theory. The very brief exposé
given here is based on Huffman and Pless (2003)—to which the reader is also referred to for
(much) more details.

Definition B.1.1. Let the set A = (a1, a2, . . . , aq) of size q, be the code alphabet; its elements
are the code symbols. A q-ary block code of length n over A is a non-empty set C of vectors
(of length n) of symbols of A. Its elements are called codewords. The size of the code is the
size of C. A code of length n and size M is called a (q-ary) (n, M)-code.

An important metric is distance. One of the most widely used metrics is the Hamming dis-
tance, denoted hd, and which we define below, together with the related concept of Hamming
weight (denoted hw).

Definition B.1.2 (Hamming distance). Let x and y be two codewords of some code C. The
Hamming distance is defined as the number of different components in x and y.

Definition B.1.3 (Hamming weight). Let x be a codeword of some code C. The Hamming
weight is defined as hd(x, 0).

In a given code C, if d is the minimum distance between any two codewords in C, then that
code is often denoted as an (n, M, d)-code. The minimum distance is denoted as d(C).

Usually the code alphabet is some finite field Fq. If the vectors of size n over this field have
(or can be endowed) with the structure of a vector space, then any subset that constitutes a
subspace is called a linear code. These are denoted [n, k]-linear codes, where k is the dimension
of the subspace (note that this means the number of codewords is qk). If the minimum distance
is d, then we say the code is a [n, k, d]-linear code. If C constitutes a linear code of dimension
k (and length n), then its dual code, denoted C⊥, is the linear code that corresponds to the
orthogonal complement of C. From well-known facts from linear algebra immediately stems
the property that dim(C⊥) = n − k.
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Let C be a linear code of dimension k in some vector space F
n
q —i.e. the set of vectors of

length n, which components are elements of Fq. Given that C is a subspace of F
n
q , we can

compute a basis for it, say (r1, . . . , rk). We can arrange them into matrix form, each vector
forming a row. We then obtain a k × n matrix. Let G be that matrix. To encode a vector u,
we compute v = uG. Note that u is a row vector of size k, and v is a row vector of size n. The
process of encoding can be visualised by thinking of u as a vector expressed in the coordinate
system of the basis of the subspace, and of v as the same vector, but now expressed in the
coordinates of the underlying vector space F

n
q .1 To decode, one reverses the process. The

matrix G is called the generator matrix. If this matrix is written in the form [Ik|X], where Ik

is the k × k identity matrix, then the generator is said to be in standard form.

We now arrive to the most important result in this brief tour of coding theory: the Singleton
bound (for proofs and further details, see (Huffman and Pless, 2003, §2.4)).

Theorem B.1.4 (Singleton bound). For any [n, k, d]-linear code over F
n
q , we have: k+ d ≤

n + 1.

Definition B.1.5 (MDS code). If a linear code verifies k + d = n + 1, we say it is a
Maximum Distance Separable (MDS) code.

Section B.4 briefly mentions a somewhat unintuitive consequence the definition of MDS
matrices in F2. For that however, we first need to introduce the notion of trivial codes—and
for that in turn, a notion of when two error-correcting codes are equivalent is required.

Definition B.1.6. Two binary (n, M)-codes are equivalent if one can be obtained from the
other via a sequence of operations of the following two types:2

1. permutation of the digits of the codewords;

2. multiplication of the digits appearing in a fixed position by a non-zero scalar.

It is possible for a linear code to not have a generator matrix in standard form. But there
always exists another linear code, equivalent to it and that does possess a standard form
generator (ibid., §1.6.2).

Definition B.1.7. An MDS code over F
n
q is trivial iff it verifies one of the following condi-

tions:

1. C = F
n
q ;

1 In effect, encoding consists in the addition of some redundancy which, in the event of transmission errors, can
be used recover the original information, without re-transmission.

2 In (Huffman and Pless, 2003, §1.6, 1.7), three forms of code equivalence are defined: permutation equivalence,
monomial equivalence, and (ǳjustǴ) equivalence. For binary codes, all these notions amount to the same, hence
we just define ǳequivalenceǴ.
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2. C is equivalent to the code generated by 1 = (1, . . . , 1);

3. C is equivalent to the dual of the code generated by 1.

The following results are also needed in §B.4 (cf. Theorem 2.4.3, p. 71, in Huffman and Pless
(2003)).

Theorem B.1.8. Let G be the k × n generator matrix of an [n, k, d]-linear code C. Then C

is MDS iff every set of k columns of G is linearly independent.

Theorem B.1.9. Let C be a linear code over Fq. Then d(C) is equal to the smallest non-zero
weight of the codewords of C.

Proof. By the definitions of Hamming weight and Hamming distance, and minimum distance,
we have: ∀ x, y, x 6= y : wt(x − y) = hd(x, y) ≥ d(C). But if the code is linear, and of x 6= y,
then x − y is always a (non-zero) codeword of C. Thus the minimum distance is the smallest
of such non-zero codewords. �

b.2 matrices and diffusion

As is so often the case in the early stages of (at least the author’s) research, one of the first
stops was Wikipedia (b). An MDS matrix is defined as:

Technically, an m × n matrix A over a finite field K is an MDS matrix if it is the
transformation matrix of a linear transformation f (x) = Ax from Kn to Km such
that no two different (m + n)-tuples of the form (x, f (x)) coincide in n or more
components. Equivalently, the set of all (m + n)-tuples (x, f (x)) is an MDS code,
i.e. a linear code that reaches the Singleton bound.

We are actually given two equivalent definitions here. To better understand the notions at
hand, we will show that equivalence. First we have the definition of a matrix being MDS:
ǳno two different (m + n)-tuples of the form (x, f (x)) coincide in n or more componentsǴ. We
can rephrase this as ǳall two (m + n)-tuples (i.e. all pairs of tuples) coincide in less than n

componentsǴ, which implies that ǳall pairs of tuples differ in m + 1 or more componentsǴ.
This implies that the minimum Hamming distance between any two tuples (x, f (x)) is
d = m + 1. If each tuple is seen as a codeword, then given that that code has dimension n

(see §B.3) and codeword size n+m, it is trivial to observe that the Singleton bound is verified
(with equality)—thus the code is MDS, which is in agreement with the second definition.

The second definition borrows the MDS concept from coding theory: a matrix is MDS if
the set of all (m + n)-tuples of the form (x, f (x)) constitute an MDS code. We show in §B.3
that that set forms indeed a linear code, with dimension n. If that code is MDS, then the
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B.3. A basis for the (x, f (x)) codewords

Singleton bound (Theorem §B.1.4: for any linear code [ℵ, k, d]3 we have k + d ≤ ℵ + 1),
is verified with equality: k + d = ℵ + 1. Given that k = n and ℵ = n + m, we obtain
d = m + 1—which is consistent with our first definition.

Thus we conclude that the two given definitions are indeed equivalent, and furthermore
that a matrix is MDS if it can be used to form the codewords of a linear [n + m, n, m + 1]

code.

So far we have the following two (equivalent) definitions, for an MDS matrix: either the set
of all (n + m)-tuples of the form (x, f (x)) form an MDS code ([n + m, n, m + 1]), or for any
two such tuples, they have to coincide in less than n components (i.e. they have to differ in
at least m + 1).

On the other hand, a (not necessarily linear) function is a multipermutation if (Junod and
Vaudenay, 2004):

A diffusion function f from Kn to Km is a multipermutation if for any x1, . . . , xp ∈

K and any integer r with 1 ≤ r ≤ n, modifying r input values on f (x1, . . . , xn)

results in modifying at least m − r + 1 output values.

Suppose the function is linear, and that its action can be represented by some m × n matrix4.
If its matrix is MDS, that means that the minimum distance between codewords of the
form (x, f (x)) is m + 1, and thus modifying r bits in x has to modify at least m + 1 − r

bits in f (x)—i.e. it is a multipermutation. Conversely, if flipping r bits in x flips at least
m + 1 − r in f (x), then how many bits remain unflipped in the (n + m)-tuple? Well, at
most (n − r) + (m − (m + 1 − r)) = n − 1 < n. In other words, any two (n + m)-vectors
coincide in less than n components—which means its matrix is MDS. So we conclude that if
f is a linear transformation that can be represented as a matrix, it is a multipermutation iff
its corresponding matrix is MDS.

b.3 a basis for the (x, f (x)) codewords

Let K be a field, and let f : K
n → K

m be the linear transformation associated to an m × n

matrix A. Here we show that the set of codewords of length n + m and of the form (x, f (x))

constitutes a linear code of dimension n. We do so by constructing the generator matrix for
it, in standard form.

3 The Hebrew letter aleph is used to denote the length of the codewords here, instead of n, so as to avoid
confusing it with the n that comes Wikipedia’s definition.

4 While multiplication by a matrix is always a linear transformation, the converse is false—there are linear
transformations that cannot be expressed via a matrix multiplication. The reasoning herein set forth (and its
respective conclusion) are only applicable if that is not the case—i.e. if the linear transformation to which it
applies can be represented as a matrix.
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Consider the standard base 〈e1, . . . , en〉 for K
n. Construct an n × (n + m) matrix G like

so: the first row is the tuple (e1, f (e1)), the second row if (e2, f (e2)), and so on until row
n. Let (x, f (x)) be an element of the code we are considering. x can be written as x =

λ1e1 + · · ·+ λnen, for some λ1, . . . , λn. Then if u = (λ1, . . . , λn), and taking into account the
linearity of f , we have uG = ((λ1e1, λ1 f (e1)) + · · ·+ (λnen, λn f (en)) = (x, f (x)). This shows
that every (n + m)-tuple of the form (x, f (x)) can be written as a linear combination of the n

vectors that constitute G’s rows—and in conjunction with the fact that, due to the way G is
constructed, its n rows are linearly independent, we can conclude that G’s rows form a basis
for the linear code at hand, and that said code has dimension n, as was to be proved.

As a final remark, note that the generator matrix just constructed provides us with a (con-
ceptually, if not computationally) simple test to see whether a given matrix is MDS or not.
Let A be the matrix that corresponds to the linear transformation f . Note that f (e1), when
interpreted as a row vector (as we did above), corresponds to the first column of A, trans-
posed. The same is true for f (e2), . . . , f (en). That means G = [In|AT]. Theorem B.1.8 then
allows us to conclude that A is an MDS matrix iff every subset of n columns from G is lin-
early independent. This is precisely the same criteria stated in Wikipedia (b).5

b.4 MDS matrices in F2

The concept of MDS matrix has a somewhat unexpected consequence when working with
matrices of bits (i.e. in F2). Consider the identity matrix Ik, for some positive integer k

greater than 1. Its k columns are obviously linearly independent, and its rows form the
basis for the code (F2)k. It is an MDS code, and according to Definition B.1.7 (1), it is also
a trivial one.

Now consider we try to add (meaning ǳappendǴ) one k-length bit column vector c to the
right of Ik. This is still a generator matrix (in standard form [I|X]) of some [n, k]-linear code
(in this case, n = k + 1). If c has only one zero entry, then it can be written as the sum of
precisely k − 1 columns of Ik—i.e. all except the one with a 1 in the same position of the 0 in
c. Then according to Theorem B.1.8, the new extended matrix cannot correspond to an MDS
code (it has a set of k columns which is not linearly independent—viz. the k − 1 columns from
Ik and c). It is straightforward to notice that the same is true whenever c has any zero entries
at all.

Given that we are working in F2, the only remaining possibility is for c to be a vector in
which all entries are 1. It is again straightforward to notice that any subset of k columns of
[Ik|c] is linearly independent, which means its rows are again the basis for an MDS code. But
this as far as we can go. If we add another column—any column—to this (k + 1)-column

5 An application of this algorithm to the matrices of AES and Twofish (Schneier et al., 1999) is coded in
twofish_aes_MDS.sage—both are MDS.
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matrix, then either it has one or more zero entries, in which case it is a linear combination of
at most k − 1 rows of Ik, or it has no zero entries, which means it is equal to the previously
added column (i.e. c), and thus that it is trivial to find a subset of k linearly dependent
columns. In either case the corresponding linear code will not be MDS.

Thus we conclude that for k ≥ 2, the only possible MDS codes are the ones equivalent to
[Ik|1k], with 1k = [1, . . . , 1]T. If k = 1, note that for a linear code of codeword size n to be
MDS, we must have d = n. Given that for linear codes, the minimum distance is equal to the
smallest non-zero Hamming weight of its codewords (Theorem B.1.9), the codeword which is
nearest to zero is the all 1 codeword. There is only one such code, which is composed of two
codewords: the all 0 codeword, and the all 1 codeword. Furthermore, for any n, and setting
k = n− 1, simple algebraic manipulations show that the codes corresponding to the generator
matrices [Ik|1k] and [1, . . . , 1]1×n are the dual codes of one another. Thus we can strengthen
our initial conclusion, generalising it to state that in F2, the only MDS codes are the trivial
ones (as per Definition B.1.7)6. The implication for MDS matrices is obvious.

6 Our reasoning in this section assumes that we can always write a generator matrix in standard form. Although
this is not the case, this limitation can be overcome by producing an equivalent code which does possess
a standard generator. As the definition of trivial codes already uses that of equivalent ones, our conclusion
remains valid.
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