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Abstract

Cryptography software has a critical nature because any failure can compromise the system’s

security. Therefore, its implementation must follow strict rules. These rules are defined by cryp-

tography standards, which must serve as guidelines to programmers that implement the algorithms

in the different programming languages.

The emergence of Java as one of the most popular programming languages makes it a natural

choice for encoding cryptographic algorithms. The aim of this thesis is to analyse that particular

use of Java. More concretely, we are interested in the following perspectives:

• functional correctness- judge how close actual implementations are with respect to funcional

descriptions made available by cryptography standards.

• efficiency considerations- the appropriateness of pure Java implementations for computa-

tionally demanding cryptographic techniques, such as those based in elliptic curves over

finite fields.

This work evaluates selected cryptographic algorithms from publicly available libraries. Their

implementations were matched against relevant cryptography standards and efficiency compared

with state-of-art C++ implementations. A solution based on extending JVM with selected opera-

tions was proposed and tested to obviate Java efficiency limitations.

Applications Areas: Cryptography.

Keywords: Java, C++, Cryptographic standards, Elliptic Curve Cryptography, Identity-Based

Encryption, MIRACL.
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Resumo

Tı́tulo da tese: Implementação de algoritmos criptográficos em Java.

O software criptográfico tem uma natureza crı́tica, já que qualquer falha pode comprometer a

segurança de um sistema. Assim sendo, a sua implementação tem que seguir regras rı́gidas. Estas

regras são definidas nos standards de criptografia, que servem de guias para os programadores que

implementam os algoritmos criptográficos nas diferentes linguagens de programação.

O facto de Java ter emergido como uma das mais populares linguagens de programação, faz

com que seja uma escolha natural para codificar algoritmos de criptografia. O objectivo desta tese

é analisar o uso de Java para esse fim particular. Mais concretamente, interessam as seguintes

perspectivas:

• correcção funcional - avaliar o quão próximo das descrições funcionais dos standards se

encontram implementações reais dos algoritmos.

• questões de eficiência - avaliar até que ponto implementações puras de Java são apropriadas

para técnicas criptográficas exigentes em termos de recursos computacionais, tais como as

técnicas baseadas em curvas elı́pticas sobre corpos finitos.

Este trabalho avalia alguns algoritmos criptográficos presentes em bibliotecas de domı́nio

público. As suas implementações são confrontadas com standards de criptografia relevantes e

a sua eficiência é comparada com implementações state-of-art em C++. Uma solução baseada em

embeber C++ na JVM é proposta e testada para ultrapassar as limitações de eficiência de Java

Áreas de aplicação: Criptografia.

Keywords: Java, C++, Standards de criptografia, Criptografia baseada em curvas elı́pticas ,

Criptografia baseada em identidade, MIRACL.
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1
Introduction

1.1 Motivations

Cryptographic software often plays a critical role in computational systems. Any failure or defi-

ciency in a cryptographic module can be exploited to compromise the system’s safety, which can

lead to catastrophic events from the security point of view.

Every system that runs cryptographic software, does it because it needs to protect information.

From the email sent between friends, to industrial projects or government secrets, the need to hide

data from an adversary is real and necessary. In the modern society, where the access and use of

computer networks is something that grows everyday, the use of Cryptography is imperative.

When correctly implemented and used, cryptography is able to effectively protect data. Not

because it is absolutely unbreakable, but because it makes unauthorised acquisition of the infor-

mation computationally infeasible or cost-prohibitive.

A programmer willing to protect some sensitive data should choose the most appropriate cryp-

tographic technique, find a sufficiently detailed description to permit its encoding in the target pro-

gramming language, adopt formats for the data and be aware of different sorts of vulnerabilities

and associated counter-measures. It is definitely a difficult task that demands deep knowledge in

a wide range of areas. Some guidelines are needed and here’s where the cryptography standards

appear.

Cryptographic standards are specifications that describe every area related with the implemen-

tation of cryptosystems. Some, such as Federal Information Processing Standards 140 (FIPS-140)

or the Common Criteria (CC), are high level standards, in the sense that they targeted towards

1



1.1. MOTIVATIONS

security evaluation and product certification. Others, like RSA’s Public-Key Cryptography Stan-

dards are positioned at a lower level, providing specifications regarding the implementation of the

algorithms and manipulation of sensitive data.

Adherence to the standards assures that a correct implementation and use of a cryptographic

technique provides the associated security level. This is because those techniques have been pre-

viously tested and validated by renowned and trusted scientific organisations. This makes these

standards one of the most valuable source for programmers of cryptographic modules.

Java, as one of the most used programming languages worldwide, has been adopted for cryp-

tographic software development. Java was developed by Sun Microsystems and is recognised as

a portable, elegant, secure, easy to learn and to maintain language. Two key aspects of Java stand

out:

1. Its portability. Because Java programs run on top of a virtual machine, the Java Virtual

Machine (JVM), they can be executed on every platform that has the Java Runtime Envi-

ronment (JRE) installed. As Sun Microsystems likes to put it, Java is a language you can:

write once, run everywhere.

2. The amount of APIs (Application Program Interfaces) available to a programmer. These

APIs provide support for a rich set of data structures and allow programs to communicate

with external systems such as databases, web-services, etc.

For the area of cryptography, Java offers the framework Java Cryptography Architecture (JCA).

It was designed around a ”provider” architecture that adheres to the principles of implementation

independence, interoperability and extensibility. The standard Sun Microsystems provider already

gives access to some of the most common cryptographic techniques, but the programmer can al-

ways install (or program) alternative providers that enlarges the scope of the API to new algorithms

and/or implementations.

An example of such alternative provider is the Bouncy Castle JCA provider. It makes acces-

sible a richer set of cryptographic algorithms, such as the ones based on elliptic curves. Elliptic

Curve Cryptography (ECC) relies on the difficulty of solving the Elliptic Curve Discrete Log-

arithm Problem. Comparing with older algorithms, ECC offers the same level of security with

much smaller keys, which can lead to less computational requirements.

But the adoption of Java might be problematic for some emergent cryptographic algorithms,

such as those based on bilinear pairings, where efficiency becomes a major concern. In fact,

programs written in Java are recognisably less efficient than those written in compiled languages

like C or C++. It is not clear whether pure Java implementations or those implementations remain

usable in real applications.

2



1.2. OBJECTIVES AND CONTRIBUTIONS

1.2 Objectives and Contributions

In this thesis, it is intended to analyse the usage of the Java as the target programming language

for cryptographic modules. This study is spread along different perspectives, ranging from the

applicability and validation of code against existing cryptography standards, to the measure of

efficiency in computationally demanding techniques. More concretely, it is intended to:

• Evaluate, for a concrete ”industrial sized” cryptographic API, the extent to which the code

follows the prescriptions made by the relevant cryptographic standards

• Check the viability of adopting Java for supporting computationally demanding crypto-

graphic techniques, such as those based on bilinear pairings.

1.3 Document Structure

The rest document is organised as follows: in Chapter 2, is provided a brief overview of some of

the available cryptography standards. In Chapter 3, is presented the Bouncy Castle JCA provider

and investigated, for selected techniques, the extent to which the code conforms with the relevant

standards. Chapter 4 is devoted to the presentation of a pure Java implementation of an Identity

Based Encryption scheme - a technique based on bilinear pairings that brings to light the efficiency

limitations of Java. In Chapter 5 is proposed a solution to overcome those efficiency limitations, by

making available directly to the JVM selected elliptic curve operations. A discussion and direction

for further work conclude the thesis.

1.4 Technical specifications

All the tests presented in this document were made on a computer with the following specifica-

tions:

• Ubuntu 8.04

• 2 GB RAM

• Intel T2300 Dual Core (1,66 GHz)

• C++ compiler: GCC

• Java version: 1.6.0.06

The file used in all tests to encrypt/decrypt, sign/verify is a 70 KB text file.
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2
Overview of cryptographic standards

This chapter presents an overview of some publicly available cryptographic standards. The choice

of the covered standards intends to put in evidence the difference of their scopes: Common Criteria

and FIPS-140 are targeted to security evaluation of products. On the other hand, the RSA’s PKCS

family of standards and IEEE P1363 are oriented to be adopted as guidelines for the actual coding

of the techniques, giving detailed descriptions of them and other implementations details.

Occasionally, during the presentation of the standards, description of particular techniques will

be highlighted, namely the RSA encryption scheme from the PKCS#1 and the ECDSA signature

scheme from P1363. These descriptions will support the conformance analysis to be performed in

Chapter 3.

2.1 Common Criteria

Common Criteria (CC) [1, 2, 3, 4] for Information Technology Security Evaluation is an interna-

tional standard for computer security.The goal is to provide an evaluation of the security capabili-

ties of products in the area of information technologies.

Through an independent evaluation of a product’s ability to be in conformity with security

standards, the CC helps customers in the decision making process. They can have more confidence

in the security of products evaluated by CC. Security demanding and dependent customers, such

as the United States Federal Government, are increasingly requiring the CC certification on the

products they consider purchase. Because the requirements for CC certification are public, vendors

can target security needs to achieve CC certification. [5]
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2.1. COMMON CRITERIA

The standard is adopted by several nations (among others: Canada, France, Germany, United

Kingdom, United States, Australia, New Zealand, Finland, Greece, Israel, Spain ) and membership

continues to expand. The standard has been renamed to Common Criteria Recognition Arrange-

ment (CCRA) in the year 2000.

In the evaluation of a products security, there are two major issues: the clients needs and

the products capabilities.To represent them, CC uses two key concepts: protection profiles and

evaluation assurance levels. Next, the essential concepts of the standard are briefly presented.

Target of evaluation

A Target of Evaluation (TOE) is product or system that is the subject of the evaluation.

Protection Profiles

A Protection Profile (PP) defines a set of security requirements for a type of product (such as

operating systems, databases, firewalls, etc.).

By making public required security features for product families, the Common Criteria allows

products to state conformity to a relevant protection profile. During CC evaluation, the product

is tested against a specific protection profile, making sure the product meets the requirements. If

it does, a client has knowledge of the product’s security features and can decide if these features

meet its needs. The client can also compare the security features of validated products.

Evaluation Assurance Level

Evaluation Assurance Level (EAL) is an indication of the level of conformance to the vendor

claims, that a products reveals. It is not an indication of security capabilities of the product, but an

independent assessment based on tests against the vendor claims.

EAL designation
EAL1 Functionally Tested
EAL2 Structurally Tested
EAL3 Methodically Tested & Checked
EAL4 Methodically Designed, Tested & Reviewed
EAL5 Semi-formally Designed & Tested
EAL6 Semi-formally Verified Design & Tested
EAL7 Formally Verified Design & Tested

Table 2.1: Evaluation Assurance Levels

source: [6]
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2.2. FEDERAL INFORMATION PROCESSING STANDARDS

Security Target

Security Target (ST) is a document that identifies the security properties of the TOE. The ST

includes an overview of the product, potential security threats, detailed information on all security

features and any claims of conformity against a PP at a specified EAL.

Examples of Security Targets (Product Specific)

• Oracle Database Management System

• Lucent, Cisco, Check Point Firewalls

Information Technologies (IT) security requirements

• Functional Requirements - define the security behaviour of the product. Once implemented,

they become security functions. Examples:

1. Identification & authentication

2. User data protection

• Assurance Requirements - the purpose is to establish confidence in security functions:

– Correctness of implementation

– Effectiveness in satisfying security objectives

Examples:

1. Testing

2. Vulnerability Analysis

The Certification Process

Product certification aims to provide customer a level a trust, letting them know that a product

went through a reliable, objective and globally accepted process.

In the CC case, to have a product certificated the vendor must first specify a ST.Then, it must

submit the ST to an accredited testing laboratory where the evaluation process will take place. The

laboratory then tests the product to verify what is stated in the ST. If the evaluation is successful,

an official certification of the product(s) against a specific PP at a specified EAL is released.

2.2 Federal Information Processing Standards

Federal Information Processing Standards (FIPS) publications are developed by the National Insti-

tute of Standards for Technology (NIST) for use by the government. These publications regulate

the requirements for government security. FIPS validation assures users that a given product has

passed thorough testing by an accredited third party lab and is suitable to secure sensitive infor-

mation.

7



2.2. FEDERAL INFORMATION PROCESSING STANDARDS

FIPS 140

FIPS 140 Publication Series coordinate the requirements and standards for cryptography modules,

both hardware and software components. This validation is demanded by the Federal Government

of the United States of America for the purchase of products implementing cryptography.

What is a cryptographic module? The set of hardware, software, and/or firmware that imple-

ments approved security functions (including cryptographic algorithms and key generation) and is

contained within the cryptographic boundary (the physical bounds of a cryptographic module).

FIPS 140-2 [7] identifies eleven areas for a cryptographic module:

Cryptographic Module Specification

Cryptographic Module Ports and Interfaces

Roles, Services and Authentication

Finite State Model

Physical Security

Operational Environment

Cryptographic Key Management

Self Tests

Design Assurance

Mitigation of Other Attacks

Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

To evaluate the quality level of each one of the eleven areas, FIPS has four distinct levels of

security, from 1 to 4 (1 is the lowest). In the end, an overall rating is assigned.

Security Level 1 Security Level 1 provides the lowest level of security. Basic security require-

ments are specified for a cryptographic module (e.g., at least one Approved algorithm or

Approved security function shall be used). No specific physical security mechanisms are

required in a Security Level 1 cryptographic module beyond the basic requirement for

production-grade components. An example of a Security Level 1 cryptographic module

is a personal computer (PC) encryption board. 1 Security Level 1 allows the software

and firmware components of a cryptographic module to be executed on a general purpose

computing system using an unevaluated operating system. Such implementations may be

appropriate for some low-level security applications when other controls, such as phys-

ical security, network security, and administrative procedures are limited or nonexistent.

The implementation of cryptographic software may be more cost-effective than correspond-

ing hardware-based mechanisms, enabling organisations to select from alternative crypto-

graphic solutions to meet lower-level security requirements.[7]

Security Level 2 Security Level 2 enhances the physical security mechanisms of a Security Level

1 cryptographic module by adding the requirement for tamper-evidence, which includes the

8



2.2. FEDERAL INFORMATION PROCESSING STANDARDS

use of tamper-evident coatings or seals or for pick-resistant locks on removable covers or

doors of the module. Tamper-evident coatings or seals are placed on a cryptographic mod-

ule so that the coating or seal must be broken to attain physical access to the plaintext cryp-

tographic keys and critical security parameters (CSPs) within the module. Tamper-evident

seals or pick-resistant locks are placed on covers or doors to protect against unauthorised

physical access. Security Level 2 requires, at a minimum, role-based authentication in which

a cryptographic module authenticates the authorisation of an operator to assume a specific

role and perform a corresponding set of services. [7]

Security Level 3 In addition to the tamper-evident physical security mechanisms required at Se-

curity Level 2, Security Level 3 attempts to prevent the intruder from gaining access to

Critical Security Parameters(CSP) held within the cryptographic module. Physical security

mechanisms required at Security Level 3 are intended to have a high probability of detect-

ing and responding to attempts at physical access, use or modification of the cryptographic

module. The physical security mechanisms may include the use of strong enclosures and

tamper detection/response circuitry that zeroizes all plaintext CSPs when the removable cov-

ers/doors of the cryptographic module are opened. Security Level 3 requires identity-based

authentication mechanisms, enhancing the security provided by the role-based authentica-

tion mechanisms specified for Security Level 2. A cryptographic module authenticates the

identity of an operator and verifies that the identified operator is authorised to assume a

specific role and perform a corresponding set of services. Security Level 3 requires the en-

try or output of plaintext CSPs (including the entry or output of plaintext CSPs using split

knowledge procedures) be performed using ports that are physically separated from other

ports, or interfaces that are logically separated using a trusted path from other interfaces.

Plaintext CSPs may be entered into or output from the cryptographic module in encrypted

form (in which case they may travel through enclosing or intervening systems).[7]

Security Level 4 provides the highest level of security defined in this standard. At this security

level, the physical security mechanisms provide a complete envelope of protection around

the cryptographic module with the intent of detecting and responding to all unauthorised

attempts at physical access. Penetration of the cryptographic module enclosure from any

direction has a very high probability of being detected, resulting in the immediate zeroiza-

tion of all plaintext CSPs. Security Level 4 cryptographic modules are useful for operation

in physically unprotected environments. Security Level 4 also protects a cryptographic mod-

ule against a security compromise due to environmental conditions or fluctuations outside of

the module’s normal operating ranges for voltage and temperature. Intentional excursions

beyond the normal operating ranges may be used by an attacker to thwart a cryptographic

module’s defences. A cryptographic module is required to either include special environ-

mental protection features designed to detect fluctuations and zeroize CSPs, or to undergo

rigorous environmental failure testing to provide a reasonable assurance that the module
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will not be affected by fluctuations outside of the normal operating range in a manner that

can compromise the security of the module.[7]

Validation Process

The validation process of FIPS 140 is described in the following steps (see figure 2.1):

• The vendor submits documentation and product for testing

• An accredited laboratory tests the product against the FIPS 140-2 Derived Test Require-

ments.

• The laboratory submits a draft certification report to NIST/CSE (CSE stands for Communi-

cations Security Establishment and is the Canadian counterpart to NIST).

• NIST/CSE elaborates questions on the certification report.

• Once these questions have been resolved with NIST/CSE, a FIPS 140 certificate is issued

by NIST/CSE.

• The new certificate is made public to the Internet on the NIST FIPS 140-1 and FIPS 140-2

Cryptographic Modules Certification List web page.
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Figure 2.1: FIPS validation process
source:http://csrc.nist.gov.
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Other cryptographic standards issued by FIPS

The FIPS series include several other standards directly concerned with cryptography. In particu-

lar, the standards that define important cryptographic techniques should be mentioned, such as the

DES or AES symmetric ciphers, the SHA family of hash functions or the DSA signature scheme.

Some of the relevant publications are:

• FIPS PUB 46-3 Data Encryption Standard (DES), 1999.

• FIPS PUB 81, DES Modes of Operation, 1980.

• FIPS PUB 180-2 Secure Hash Standard (SHS),2002, defines the Secure Hash Algorithm

(SHA) family.

• FIPS PUB 186-2 Digital Signature Standard (DSS), 2000.

• FIPS PUB 196 Entity Authentication Using Public Key Cryptography, 1997.

• FIPS PUB 197 Advanced Encryption Standard (AES), 2001.

• FIPS PUB 198 The Keyed-Hash Message Authentication Code (HMAC), 2002 [8].

Relation between FIPS 140 and Common Criteria

FIPS 140 requires CC evaluations for the underlying operating system against specific protection

profiles for level 2 (EAL 2), level 3 (EAL 3) and level 4 (EAL 4) [9, 7].

2.3 Public Key Cryptography Standards

The Public-Key Cryptography Standards (PKCS) are specifications produced by RSA Laborato-

ries for the purpose of accelerating the deployment of public-key cryptography. PKCS defines

various standards called PKCS#1 through #15. The covered areas are wide:

• RSA encryption and signature schemes –– PKCS #1 v2.1: RSA Cryptography Standard [10].

• Key agreement –– PKCS #3 v1.4: Diffie-Hellman Key-Agreement Standard [11]

• Password-based key-generation functions and encryptions schemes –– PKCS #5 v2.1: Password-

Based Cryptography Standard [12]

• Private-key information syntax and exchange –– PKCS #8: Private-Key Information Syntax

Standard [13] and PKCS #12 v1.0: Personal Information Exchange Syntax [14]

• Certificate request syntax and selected attribute types –– PKCS #10: Certification Request

Syntax Standard [15] and PKCS #9: Selected Attribute Types [16]
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• Cryptographic token API and information syntax –– PKCS #11: Cryptographic Token In-

terface Standard [17] and PKCS #15: Cryptographic Token Information Format Standard

[18]

In the next section, PKCS #1: RSA Cryptography Standard will be the focus, as it will be the

subject of a case study to be presented in Chapter 3.

2.3.1 PKCS #1 –– RSA Cryptography Standard

As stated before, PKCS #1 v2.1 comprises an encryption and a signature scheme. Only the en-

cryption scheme will be highlighted.

Key types

To types of keys are employed in the primitive and schemes defined in this standard: RSA public

key and RSA private key. Combined, they form a RSA key pair.

This specification supports “multi-prime” RSA where the modulus may have more than two

prime factors. “Multi-prime” brings the benefit lower computational cost for the decryption and

signature primitives, provided that the CRT (Chinese Remainder Theorem) is used. Quisquater

and Couvreur [19] observed the benefit of applying the Chinese Remainder Theorem to RSA

operations.

A RSA public key consists of two components:

n the RSA modulus, a positive integer.

e the RSA public exponent, a positive integer.

A RSA private key can have two different representations:

1. the pair (n, d), where the components have the following meanings:

n the RSA modulus, a positive integer

d the RSA private exponent, a positive integer

2. The second representation consists of a quintuple (p, q, dP, dQ, qInv) and a (possibly empty)

sequence of triplets (ri, di, ti), i = 3, . . . , u, one for each prime not in the quintuple, where

the components have the following meanings:

p the first factor, a positive integer

q the second factor, a positive integer

dP the first factor’s CRT exponent, a positive integer

dQ the second factor’s CRT exponent, a positive integer
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qInv the (first) CRT coefficient, a positive integer

ri the ith factor, a positive integer

di the ith factor’s CRT exponent, a positive integer

ti the ith factor’s CRT coefficient, a positive integer

Data conversion primitives

This standard defines two data conversion primitives:

• I2OSP –– Integer-to-Octet-String primitive. Converts a nonnegative integer to an octet string

of a specified length. an octet string is an ordered sequence of octets (eight-bit bytes).

• OS2IP –– Octet-String-to-Integer primitive. Converts an octet string to a nonnegative integer.

Encryption and decryption primitives

Encryption and decryption primitives are operations that allow a plaintext to be transformed in

ciphertext and vice-versa, respectively.

RSA defines:

• RSAEP - encryption primitive. Given RSA public key (n, e) and the message representative

m, computes c = me mod n.

• RSADP - decryption primitive. Given RSA private key K, where K has one of the following

forms:

1. a pair (n, d).

2. a quintuple (p, q, dP, dQ, qInv) and a possible empty sequence of triplets (ri, di, ti), i =

3, ..., u.

must compute:

1. If the first form (n, d) of K is used, m = cd mod n .

2. If the second form (p, q, dP, dQ, qInv) and (ri, di, ti) of K is used:

(a) Let m1 = cdP mod p, m2 = cdQ mod q.

(b) If u > 2, let mi = cdi mod ri, i = 3 . . . u.

(c) Let h = (m1 − m2) · qInv mod p.

(d) Let m = m2 + q · h.

(e) If u > 2, let R = r1 and for i = 3 . . . u do:

i. Let R = R · ri−1.

ii. Let h = (mi − m) · ti (mod ri)).

iii. Let m = m + R · h.
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RSA encryption schemes

An encryption scheme consists of an encryption operation followed by a decryption operation. A

encryption operation produces a ciphertext from a initial message with a recipient’s RSA public

key. On the other hand, the decryption operation recovers the message from the ciphertext by

using the corresponding RSA private key.

Two encryption schemes are described in PKCS #1 v2.1:

• RSAES-OAEP

– RSAES-OAEP-ENCRYPT –– Options: Hash function and the mask generation func-

tion (MGF).

Input: (n, e) recipient’s RSA public key (k denotes the length in octets of the RSA

modulus n); M message to be encrypted, an octet string of length mLen, where mLen ≤

k−2hLen−2; L optional label to be associated with the message (the default value for

L, if L is not provided, is the empty string)

Output: C ciphertext, an octet string of length k.

RSAES-OAEP-ENCRYPT is comprised by the stages:

1. Length checking. The length of the input parameters is validated.

2. EME-OAEP encoding (see bellow).

3. RSA encryption

(a) Convert the encoded message to an integer message representative m (using

data conversion primitive OS2IP).

(b) Apply the RSAEP encryption primitive to the RSA public key (n, e) and the

message representative m to produce an integer ciphertext representative c

(c) Convert the ciphertext representative c to a ciphertext C of length k octets

(using data conversion primitive I2OSP)

4. Output the ciphertext C.

– RSAES-OAEP-DECRYPT –– Options: Hash function and the mask generation func-

tion (MGF).

Input: K recipient’s RSA private key (k denotes the length in octets of the RSA mod-

ulus n); C ciphertext to be decrypted, an octet string of length k, where k ≥ 2hLen + 2;

L optional label whose association with the message is to be verified (the default value

for L, if L is not provided, is the empty string).

Output: M message, an octet string of length mLen, where mLen ≤ k − 2hLen − 2.

RSAES-OAEP-DECRYPT is comprised by the stages:

1. Length checking. The length of the input parameters is validated.
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2. RSA decryption

(a) Convert the ciphertext C to an integer ciphertext representative c (using data

conversion primitive OS2IP)

(b) Apply the RSADP decryption primitive to the RSA private key K and the

ciphertext representative c to produce an integer message representative m.

(c) Convert the message representative m to an encoded message of length k

octets.

3. EME-OAEP decoding (where message M is extracted).

4. Output the message M.

• RSAES-PKCS1-v1.5

RSAES-OAEP is recommended for new applications; RSAES-PKCS1-v1.5 should only be

used for compatibility with existing applications.

RSA padding methods

When using block cipher algorithms, padding is used to make the plaintext to be encrypted match

the block size. This is done by adding a padding string.

PKCS #1 v2.1 provides two message padding methods:

• EME-OAEP

– EME-OAEP encoding.

– EME-OAEP decoding.

• EME-PKCS1-V1.5

EME-OAEP encoding:

1. If the label L is not provided, let L be the empty string. Let lHash = Hash(L), an octet

string of length hLen.

2. Generate an octet string PS consisting of k − mLen − 2hLen − 2 zero octets. The length of

PS may be zero.

3. Concatenate lHash, PS, a single octet with hexadecimal value 0x01, and the messageM to

form a data block DB of length k − hLen − 1 octets as DB = lHash ‖ PS ‖ 0 × 01 ‖ M.

4. Generate a random octet string seed of length hLen.

5. Let dbMask = MGF(seed, k − hLen − 1).

6. Let maskedDB = DB ⊕ dbMask.
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7. Let seedMask = MGF(maskedDB, hLen).

8. Let maskedS eed = seed ⊕ seedMask.

9. Concatenate a single octet with hexadecimal value 0x00, maskedSeed, and maskedDB to

form an encoded message EM of length k octets as EM = 0 × 00 ‖ maskedS eed ‖

maskedDB.

Figure 2.2: EME-OAEP encoding operation.
retrieved from PKCS#1 v2.1.

2.4 P1363

IEEE P1363 is a standard for public-key cryptography developed by the Institute of Electrical and

Electronics Engineers (IEEE). The addressed areas:

• Traditional public-key cryptography ––(IEEE Std 1363-2000 [20] and 1363a-2004 [21])

• Lattice-based public-key cryptography (P1363.1) ––[22]

• Password-based public-key cryptography (P1363.2) ––[23]
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• Identity-based public-key cryptography using pairings ––(P1363.3) (under development, first

draft published in May 2008 [24]).

The focus of this section will be the Traditional public-key cryptography, as it us the most

relevant for the purpose of this work. In fact, the Identity-based public-key cryptography using

pairings would be relevant for the subject of Chapter 3, if it was not in such preliminary stage of

development.

2.4.1 Traditional public-key cryptography

This specification covers a wide scope and includes the traditional areas of public-key cryptogra-

phy:

• Key agreement;

• Signature schemes;

• Encryption schemes;

In P1363 [20] appeared a first set of such schemes and later, in P1363a [21] the set of cov-

ered techniques was extended and included additional information and corrections to the previous

standard.

An interesting aspect of this standard is that it organises the above mentioned techniques ac-

cording to the underlying mathematical hard-problem:

• Integer factorisation

• Discrete logarithm

• Elliptic curve discrete logarithm

In addition to cryptographic schemes presented in the body of the standard, it was included a rich

set of normative and informative appendixes:

• Annex A (Informative) Number-theoretic Background ––includes a comprehensive and com-

plete background on the number-theoretic concepts and algorithms required by the tech-

niques.

• Annex B (Normative) Conformance ––provides implementers with a consistent language for

claiming conformance with parts of this standard.

• Annex C (Informative) Rationale ––this annex provides information about the standard in

the form of questions and answers. It can be seen as a sort of Frequently Asked Questions.

• Annex D (Informative) Security Considerations ––addresses security considerations for the

cryptographic techniques that are defined in this standard.
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• Annex E (Informative) Formats ––P1363 does not specify how the mathematical and cryp-

tographic objects are to be represented for communication or storage. This annex provides

references to other relevant standards, such as the Abstract Syntax Notation 1 (ASN.1), and

defines some recommended primitives for that purpose.

• Annex F (Informative) Bibliography.

In the following sections, a particular technique will be highlighted ––The Elliptic Curve Dig-

ital Signature Algorithm ––together with the supporting mathematical operations (elliptic curve

operations). Again, this is motivated by the fact that this technique will be used in the case study

presented in Chapter 3.

2.4.2 Elliptic Curve Cryptography Background

Because it is less widespread than other established public-key systems such as DSA and RSA, it

is important to briefly introduced this technique.

Elliptic Curve Cryptography (ECC) is based on the analogue of the discrete logarithm problem

in a finite field, but it uses a group of points on a elliptic curve (EC) defined over a finite field.

The main advantage of ECC is that the best algorithm known for solving the elliptic curve discrete

logarithm problem (ECDLP) takes exponential time. In comparison, the best algorithms known

for solving the mathematical problem in which RSA or DSA are based upon, take sub-exponential

time. In practical terms, this means ECC needs smaller parameters to achieve the same level of

security. ECC can use keys five times smaller than the ones used by RSA and DSA. With smaller

key sizes, it is possible to:

• perform faster computations.

• use less processing power, smaller storage space and bandwidth.

These features make ECC very attractive, particularly for constrained devices such as pagers,

smart cards and cellphones.

The implementation of ECC requires some decisions to be made:

• Underlying finite field. The most common choices are prime fields (Fp) or binary fields

(F2m).

• Type and parameters of the elliptic curve.

• Algorithms for the finite field arithmetic (addition of points and scalar multiplication).

These choices have a significant impact of overall ECC performance. Examples of schemes

based on ECC (defined in [20]):

• Elliptic Curve Diffie-Hellman (ECSVDP-DH).
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• Elliptic Curve Digital Signature Algorithm (ECSP-DSA and ECVP-DSA).

For further explanations on ECC, particularly about the mathematical foundations that support

it, see [25].

2.4.3 ECC Arithmetic Operations

As mentioned, Annex A of P1363 [26] presents a fairly complete description of the mathematical

concepts and algorithms required by the covered cryptographic techniques. In particular, it devotes

a section to the description of algorithms for computing elliptic curve operations, namely the

point-addition operation and scalar multiplication.

The attention will be restricted to curves over prime fields Fp (p is a prime number), defined

by equations of the form:

y2 = x3 + ax + b (2.1)

where a and b are the parameters of the curve. A point P is either O - the point at infinity - or

a pair (xP, yP) of coordinates in Fp satisfying the defining equation.

Point Addition

The set of points of an elliptic curve form an algebraic group under the point addition operation.

The addition of two points can be computed by the following algorithm (extracted from [26],

section A10.1.

Input: a prime p > 3; coefficients a, b for an elliptic curve E : y2 = x3 + ax + b modulo p;

points P0 = (x0, y0) and P1 = (x1, y1) on E.

Output: the point P2 := P0 + P1.

1. If P0 = O then output P2 ← P1 and stop.

2. If P1 = O then output P2 ← P0 and stop.

3. If x0 , x1 then

(a) set λ← (y0 − y1)/(x0 − x1) mod p.

(b) go to step 7.

4. If y0 , y1 then output P2 ← O and stop.

5. If y1 = 0 then output P2 ← O and stop.

6. Set λ← 3x2
1 + a)/(2y1) mod p

7. Set x2 ← λ2 − x0 − x1 mod p

8. Set y2 ← (x1 − x2)λ − y1 mod p
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9. Output P2 ← (x2, y2)

The above algorithm requires 3 or 4 modular multiplications and a modular inversion. To subtract

the point P = (x, y), one adds the point −P = (x,−y).

Scalar Multiplication

Elliptic Scalar Multiplication is the process of obtaining an elliptic curve point P1, by multiplying

an integer n by another curve point P0. Both points belong to the same curve. The following

algorithm is extracted from [26],section A10.3.

Input: an integer n and an elliptic curve point P. Output: the elliptic curve point nP.

1. If n = 0 then output O and stop.

2. If n < 0 then set Q← (−P) and k ← (−n), else set Q← P and k ← n.

3. Let hlhl − 1 . . . h1h0 be the binary representation of 3k, where the most significant bit hl is 1.

4. Let klkl − 1 . . . k1k0 be the binary representation of k.

5. Set S ← Q.

6. For i from l − 1 down to 1 do

(a) Set S ← 2S .

(b) If hi = 1 and ki = 0 then compute S ← S + Q via the point addition algorithm (for

prime case or binary case, as applies).

(c) If hi = 0 and ki = 1 then compute S ← S − Q via the point addition algorithm (for

prime case or binary case, as applies).

7. Output S.

2.4.4 Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature algorithm defined over

an elliptic curve. It was first proposed in 1992 by Scott Vanstone [27] and in the following years

accepted as a standard by organisations such as the International Standards Organisation (ISO) or

the American National Standards Institute (ANSI), but is also included on P1363. In this section,

the algorithm will be briefly presented. EC domain parameters (q, a, b, r,G) will be mentioned as

input, where:

q is the prime number that defines the finite field.

a and b are the curve parameters.
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G is the base point (or generator).

r is the order of G (the smallest non-negative numbersuch that rG = O)

The FE2IP (Field Element to Integer Conversion Primitive) will also be mentioned. It is

defined in P1363[20] and its purpose is to convert finite field elements to non-negative integers

Signature (ECSP-DSA)

Input:

• The EC domain parameters (q, a, b, r,G) associated with the key private key s.

• The signer’s private key s.

• The message representative, which is an integer f ≥ 0.

Output: The signature, which is a pair of integers (c, d), where 1 ≤ c < r and 1 ≤ d < r.

The signature (c, d) shall be computed by the following or an equivalent sequence of steps:

1. Generate a key pair (u,V) with the same set of domain parameters as the private key s.

2. Let V = (xV , yV ) (V , O because V is a public key).

3. Convert xV into an integer i with primitive FE2IP.

4. Compute an integer c = i mod r. If c = 0, then go to step 1.

5. Compute an integer d = u−1( f + sc) mod r. If d = 0, then go to step 1.

6. Output the pair (c, d) as the signature.

Verification (ECVP-DSA)

Input:

• The EC domain parameters (q, a, b, r,G) associated with the key W.

• The signer’s public key W.

• The message representative, which is an integer f ≥ 0.

• The signature to be verified, which is a pair of integers (c, d).

Output: “Valid” if f and (c, d) are consistent, given the key and the domain parameters; “in-

valid” otherwise.

The output shall be computed by the following or an equivalent sequence of steps:
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1. If c is not in [1, r − 1] or d is not in [1, r − 1], output “invalid” and stop.

2. Compute integers h = d−1 mod r; h1 = f h mod r; h2 = ch mod r.

3. Compute an elliptic curve point P = h1G + h2W. If P = O, output “invalid” and stop;

otherwise, P = (xP, yP).

4. Convert the field element xP to an integer i with primitive FE2IP.

5. Compute an integer c′ = i mod r.

6. If c′ = c, then output “valid”; else, output “invalid.”

2.4.5 Conformance

Conformance claims made by an implementation are mere claims, unless their accuracy can be

assured by other means. Such other means may include, for example, implementation validation

or assignment of legal liability to the implementer claiming conformance. They are outside the

scope of this standard.

2.5 Conclusion

This chapter presents an overview of some cryptography standards. It should be noted the consid-

erable overlap and cross-referencing across the standards. For instance, the RSA encryption and

signature schemes described in PKCS #1 reappear in P1363 (including the corresponding message

encoding operations).

The Standards for Efficient Cryptography [28], devoted to the standardisation of ECC and

which was also subject of study in this work, should also be mentioned. They were not included

in this survey because its content significantly overlaps with P1363.
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3
Study of a cryptographic API for Java

A cryptographic Application Programming Interface (API) enables a programmer to have at his

disposal the implementation of cryptographic techniques. It is an abstraction layer that isolates the

programmer from the code used on the actual implementation.

There is a wide range of cryptography APIs available. Here are a few examples:

• Java Cryptography Architecture

• Microsoft Cryptography API

• Linux Kernel Cryptographic API

• International Crypto API for GNU/Linux

• Bouncy Castle Crypto APIs

The scope of some of these API’s is broader than others. Some are only available in one pro-

gramming language, like C#, therefore restricting them to be used only in certain environments.

Others are written in popular and multi-platform languages like Java, which widespreads its use

to almost every systems. Some are open-source, which means its source code is publicly available

and any programmer can make changes to it.

Bouncy Castle Crypto APIs will be the focus of this chapter. Why Bouncy Castle? Primar-

ily because it is an open-source Java based API, that covers the most common and significant

cryprographic implementations.
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3.1 Java Cryptography Architecture

Java Cryptography Architecture (JCA) and the the Java Cryptographic Extension (JCE) constitute

a Java framework that provides a cryptographic API. The difference between JCA and JCE is

merely historic, so it is common for the names to be used interchangeably or even together as

JCA/JCE.

JCA makes use of a provider architecture. In the context of JCA, a provider is a concrete

implementation of a set of cryptographic services. A provider can offer different services and

different providers can be used in a program. The provider architecture makes JCA independent

of the cryptographic techniques and their implementations. This way, is possible to include and

use implementations that are not supported by Sun’s official JCA distribution, which makes JCA

also extensible.

One of the main advantages of JCA is the separation between concepts and implementations.

There are classes that represent a cryptographic concept, like the class Cipher for example. JCA

enables the programmer to use a cipher without having to worry about the underlying details. They

are all encapsulated. The programmer just has to decide the algorithm to be used (AES or DES, for

example). These also means that applications can work with different cryptographic algorithms

without modifying the code.

The Provider Architecture of JCA has the Engine Classes on its core. These classes provide

an interface to the functionality of a cryptographic service. Examples of Engine Classes are:

MessageDigest generates an object that implements a message digest algorithm.

Signature generates an object for signature and verification.

CertificateFactory generates certificate, certification path and certificate revocation list objects.

Cipher generates an object for encryption and decryption.

Each Engine Class has a correspondent Service Provider Interface (SPI) class, which is an ab-

stract class that defines the methods that cryptographic service providers must implement.Therefore,

a concrete implementation of an algorithm must be a subclass of the corresponding SPI class and

must implement all the abstract methods. With this provider based architecture, it possible to

use several different cryptographic service providers. An application requests the type of object

(such as Cipher) and the associated algorithm (RC4, for example) and an appropriate object is

returned to it. It is possible to specify the providers preference order which is the order providers

are searched for requested services when no specific provider is specified. It is also possible to

explicitly select a specific provider. An example of a JCA service request is given in code excerpt

3.1.

It is possible to see how a programmer, having more than one provider installed on the system,

can simultaneous use the providers, while the providers are totally independent of one another. It

26



3.2. BOUNCY CASTLE CRYPTO APIS

( . . . . )
/ * Get a c i p h e r i n s t a n c e from t h e d e f a u l t p r o v i d e r
Cipher a = Cipher . g e t I n s t a n c e (”RC4”) ;

/ * Get t h e same c i p h e r , b u t from t h e i n s t a l l e d p r o v i d e r XPTO , which a p p l i e s a
d i f f e r e n t t e c h n i q u e

Cipher b = Cipher . g e t I n s t a n c e (”RC4” ,”XPTO”) ;

( . . . . )

Code excerpt 3.1: Example of JCA providers use

is also possible to see how the JCA offers the separation between concepts and implementations.

The programmer just indicated the algorithm (RC4) and it gets an object representing it.

The use of JCA cryptographic services follows a pattern:

• Instance creation - through the method getInstance. The programmer specifies the algorithm

it wants and possibly the provider.

• Initialisation - through the use of the init method.

• Use - through the use of each Engine Class methods: upDate, doFinal, sign, etc.

For detailed information on JCA, including instructions on the installation of providers, con-

sult the “Java Cryptographic Architecture Reference Guide“ [29]

3.2 Bouncy Castle Crypto APIs

Bouncy Castle Crypto APIs are developed by Legion of the Bouncy Castle (BC) team and have

their website at http://www.bouncycastle.org. BC is an open-source project that offers a

very complete API for cryptographic operations for the programming languages Java and C#.

Regarding the Java API, BC provides:

• A lightweight cryptographic API, which implements all the techniques supported by BC

and that can be used in all environments, including those that not directly support JCA, like

Java 2 Micro Edition (J2ME).

• A JCA/JCE provider that offers the additional infrastructure that connects JCA and the im-

plementations available by the light-weight cryptographic API.

• A JCE clean room implementation, which is a rewriting of the original JCE methods that

dates back to when the Sun JCE API was not available outside of the United States.

• Specific API’s for several protocols, such as Online Certificate Status Protocol (OCSP) or

the Transport Layer Security (TLS), that are outside the scope of this work.
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/ / EXAMPLE 1
Ci ph e r r s a C i p h e r = Ci ph e r . g e t I n s t a n c e ( "RSA/NONE/PKCS1Padding" ,"BC" ) ;

/ / EXAMPLE 2
Ci ph e r r s a C i p h e r = Ci ph e r . g e t I n s t a n c e ( "RSA/NONE/OAEPWithSHA1AndMGF1Padding" ,"BC

" ) ;

/ / EXAMPLE 3
Ci ph e r r s a C i p h e r = Ci ph e r . g e t I n s t a n c e ( "RSA/NONE/NoPadding" ,"BC" ) ;

Code excerpt 3.2: Obtaining an RSA object

The focus of this chapter is the study of the JCA/JCE provider (together with the correspon-

dent lightweight API). In direct comparison with the standard Sun’s provider, BC offers a bigger

number of cryptographic techniques. One of the most interesting features of BC is the support for

techniques based on elliptic curves.

3.2.1 Installation

Bouncy Castle can be used as a JCA provider. To use Bouncy Castle Crypto APIs as a crypto-

graphic provider in Java, there are two choices:

1. Dynamic installation: The provider is loaded at runtime through an instruction in the pro-

gram code.

2. Static installation: Modify the Java Runtime Environment (JRE) options and make Bouncy

Castle one of the JCA providers.

3.3 RSA Cipher Implementation

The purpose of the this section is to study the BC implementation of the RSA cipher, in particular

if it’s easy to check for conformance with PKCS#1.

The study will focus on the functional aspects of the implementation, leaving aside details

such as the parameters specification or the Abstract Syntax Notation 1 (ASN.1) codifications.

3.3.1 Implementation

An RSA cipher object is obtained by using the getInstance method from the class Cipher. Exam-

ples of invocations follow.

On the first example, the padding specified in PKCS#1v1.5 is used; on the second the OAEP

is used, as specified in the PKCS#1v2; on the third, no padding is used.

The JCA selection mechanism will select the appropriate class to satisfy the request. On BC,

for RSA that class is org.bouncycastle.jce.provider.JCERSACipher which is a subclass of the ab-

stract class javax.crypto.CipherSpi (through the class org.bouncycastle.jce.provider.WrapCipherSpi)

and it will be responsible for supplying the required functionality for the cipher object.
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JCERSACipher class acts as a stub between JCA and the required functionality from the BC

lightweight API. In this class, the cipher object will be instantiated as an instance of a class from

the API. In the RSA case, those classes are:

• org.bouncycastle.crypto.engines.RSACoreEngine - offers the basic functionality from the

RSA primitives.

• org.bouncycastle.crypto.engines.RSAEngine offers the basic functionality from the RSA

primitives with no padding. It’s a stub for RSACoreEngine.

• org.bouncycastle.crypto.engines.RSABlindedEngine - implements the RSA Blinding on the

decipher operation. The blinding operation is discussed further ahead.

• org.bouncycastle.crypto.encodings.OAEPEncoding - implements the padding OAEP.

• org.bouncycastle.crypto.encodings.PKCS1Encoding - implements the padding scheme from

PKCS#1v1.5.

Because it is recommended by the latest PKCS version, RSA with OAEP will be discussed.

As required by PKCS#1, BC allows different versions of cryptographic hash functions to be

used on the codification of the padding OAEP:

• SHA1

• SHA 224

• SHA256

• SHA384

• SHA512

This parameterisation is done on class OAEPParameterSpec.

Once all the parameterisations are complete, the cipher object will be instantiated as an ob-

ject of class OAEPEncoding. The constructor of this class, in turn, receives an instance of the

underlying primitive ––an object of class RSABlindedEngine. In short, the JCERSACipher will be

instantiated as:

/ / T h i s code i s s i m p l i f i e d f o r t h e sake o f i l l u s t r a t i o n . The hash f u n c t i o n can
be s p e c i f i e d . By omis s ion , t h e SHA1 i s used

c i p h e r =new OAEPEncoding ( new RSABlindedEngine ( ) ) ;
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Lets analyse the OAEPEncoding class. This class implements the EME-OAEP scheme by

closely following the description present in PKCS#1. The implementation of support operations

can be found in the class, such as:

• OS2IP conversion

• I2OSP conversion

• MGF1 - Mask Generation Function

Also, the encryption and the decryption operations:

• RSAES-OAEP-ENCRYPT - method encodeBlock

• RSAES-OAEP-DECRYPT - method decodeBlock

p u b l i c byte [ ] encodeBlock (
byte [ ] in ,
i n t i nOf f ,
i n t inLen )
throws I n v a l i d C i p h e r T e x t E x c e p t i o n

{

byte [ ] b l o c k = new byte [ g e t I n p u t B l o c k S i z e ( ) + 1 + 2 * defHash . l e n g t h ] ;

/ / copy i n t h e message

System . a r r a y c o p y ( in , inOf f , b lock , b l o c k . l e n g t h − inLen , inLen ) ;

/ / add s e n t i n e l

b l o c k [ b l o c k . l e n g t h − inLen − 1] = 0x01 ;

/ / as t h e b l o c k i s a l r e a d y z e r o e d − t h e r e ’ s no need t o add PS ( t h e >= 0
pad o f 0 )

/ / add t h e hash o f t h e e n c o d i n g params .

System . a r r a y c o p y ( defHash , 0 , b lock , defHash . l e n g t h , defHash . l e n g t h ) ;

/ / g e n e r a t e t h e seed .

byte [ ] s eed = new byte [ defHash . l e n g t h ] ;

random . n e x t B y t e s ( s eed ) ;

/ / mask t h e message b l o c k .
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byte [ ] mask = m a s k G e n e r a t o r F u n c t i o n 1 ( seed , 0 , s eed . l e n g t h , b l o c k .
l e n g t h − defHash . l e n g t h ) ;

f o r ( i n t i = defHash . l e n g t h ; i != b l o c k . l e n g t h ; i ++)
{

b l o c k [ i ] ˆ= mask [ i − defHash . l e n g t h ] ;
}

/ / add i n t h e seed

System . a r r a y c o p y ( seed , 0 , b lock , 0 , defHash . l e n g t h ) ;

/ / mask t h e seed .

mask = m a s k G e n e r a t o r F u n c t i o n 1 (
b lock , defHash . l e n g t h , b l o c k . l e n g t h − defHash . l e n g t h ,

defHash . l e n g t h ) ;

f o r ( i n t i = 0 ; i != defHash . l e n g t h ; i ++)
{

b l o c k [ i ] ˆ= mask [ i ] ;
}

re turn e n g i n e . p r o c e s s B l o c k ( b lock , 0 , b l o c k . l e n g t h ) ;
}

Code excerpt 3.3: encodeBlock method from class OAEPEncoding

Code excerpt 3.3 contains the code of the method encodeBlock as distributed in BC. All the

steps contain comments from the programmers, which helps understanding all the phases. By

analysing the code and comparing to what PKCS#1 establishes for EME-OAEP, as can be seen in

figure 2.2, it is easy to establish a correlation.

The last line of the code fragment invokes the method processBlock of the variable engine.

This variable is initialised with the cipher object passed to the constructor as a parameter. In this

case, the cipher is an object from RSABlindedEngine.

As so, it would be expected to have RSAEP and RSADP implemented in the class RSABlind-

edEngine. But, when analysing the class RSABlindedEngine, it is possible to conclude that it

does not implement the RSAEP and RSADP primitives described on PKCS#1. Those are imple-

mented in the class RSACoreEngine. What happens in class RSABlindedEngine is that, before

those primitives are called in the code, a blinding mechanism is implemented.

The blinding mechanism purpose is to protect the decryption primitive from ”timming at-

tacks”, like those described in [30]. Here’s a brief overview of the blinding mechanism:

1. Generate a secret random number r between 0 and n − 1.
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2. Compute x′ = xre mod n, where e is the public exponent.

3. Compute y′ = (x′)d mod n with the ordinary RSA decryption primitive.

4. Compute y = y′r−1 mod n. The result is as expected because red = r mod n.

Since the mechanism involves a secret x′, its running time cannot be correlated with cryp-

togram x, so a timing attack would fail on gaining information regarding the private key.

Regarding the implementation of the primitives RSAEP and RSADP, they are implemented on

the method processBlock of the class RSACoreEngine, as shown in code excerpt 3.4

p u b l i c B i g I n t e g e r p r o c e s s B l o c k ( B i g I n t e g e r i n p u t )
{

/ / DECRYPTION
i f ( key i n s t a n c e o f R S A P r i v a t e C r t K e y P a r a m e t e r s )
{

/ /

/ / we have t h e e x t r a f a c t o r s , use t h e Ch inese Remainder Theorem −

t h e a u t h o r
/ / w i s h e s t o e x p r e s s h i s t h a n k s t o Dirk Bonekaemper a t r t s f f m . com

f o r
/ / a d v i c e r e g a r d i n g t h e e x p r e s s i o n o f t h i s .
/ /

R S A P r i v a t e C r t K e y P a r a m e t e r s c r tK ey = ( R S A P r i v a t e C r t K e y P a r a m e t e r s ) key
;

B i g I n t e g e r p = c r t Ke y . ge tP ( ) ;
B i g I n t e g e r q = c r t Ke y . getQ ( ) ;
B i g I n t e g e r dP = c r t Ke y . getDP ( ) ;
B i g I n t e g e r dQ = c r t Ke y . getDQ ( ) ;
B i g I n t e g e r qInv = c r t Ke y . ge tQInv ( ) ;

B i g I n t e g e r mP, mQ, h , m;

/ / mP = ( ( i n p u t mod p ) ˆ dP ) ) mod p
mP = ( i n p u t . r e m a i n d e r ( p ) ) . modPow ( dP , p ) ;

/ / mQ = ( ( i n p u t mod q ) ˆ dQ ) ) mod q
mQ = ( i n p u t . r e m a i n d e r ( q ) ) . modPow ( dQ , q ) ;

/ / h = q Inv * (mP − mQ) mod p
h = mP . s u b t r a c t (mQ) ;
h = h . m u l t i p l y ( qInv ) ;
h = h . mod ( p ) ; / / mod ( i n Java ) r e t u r n s t h e p o s i t i v e

r e s i d u a l

/ / m = h * q + mQ
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m = h . m u l t i p l y ( q ) ;
m = m. add (mQ) ;

re turn m;
}

e l s e
{ / / ENCRYPTION

re turn i n p u t . modPow (
key . g e t E x p o n e n t ( ) , key . ge tModulus ( ) ) ;

}

}

Code excerpt 3.4: processBlock method from RSACoreEngine

It is easy to correlate what is implemented by the code with what PKCS#1 establishes to

RSAEP and RSADP, as can be seen is section 2.3.1.

After studying the BC implementation of the RSA cipher, one can conclude that it almost

matches the specification presented in PKCS#1. Nevertheless, it introduces a feature not present

in PKCS#1: the blinding mechanism on the decryption phase, to protect against “timming attacks“.

The study also demonstrated that in order to validate the implementation against a standard, it

is necessary to consider a big number of interconnected classes, pinpointing the relevant parts.

3.4 ECDSA Signature

In this section the BC implementation of the digital signature ECDSA will be studied, in particular

if it’s easy to check for conformance with P1363. Again, the study will focus on the functional

aspects of the implementation.

3.4.1 Implementation

An ECDSA object is obtained by calling the getInstance method from the engine class Signature.

/ / G e t t i n g an ECDSA o b j e c t

/ / EXAMPLE 1
S i g n a t u r e e c d s a = S i g n a t u r e . g e t I n s t a n c e ( "ECDSA" , "BC" ) ;

/ / EXAMPLE 2
e c d s a = S i g n a t u r e . g e t I n s t a n c e ( "SHA256/ECDSA" , "BC" ) ;

Code excerpt 3.5: Obtaining an ECDSA object

Code excerpt 3.5 shows an example of how to obtain ECDSA objects. The examples differ on

the cryptographic hash function used:
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• Example 1: SHA-1

• Example 2: SHA-256 (SHA-2)

Like in the RSA case, JCA selection mechanism will select the appropriate class to satisfy

the request. In BC and for ECDSA, that class is ecDSA, a sub-class of JDKDSASigner which,

in turn, is a sub-class of SignatureSpi ––the abstract class responsible to provide all the required

functionalities for the signature object. The ecDSA class connects the JCA mechanism to the BC

lightweight API. Regarding ECDSA, the signature and verification operations are implemented

in class org.bouncycastle.signers.ECDSASigner. This last class is invoked inside JDKDSASigner

nested classes.

s t a t i c p u b l i c c l a s s ecDSA
ex tends JDKDSASigner

{

p u b l i c ecDSA ( )
{

super ( new SHA1Digest ( ) , new ECDSASigner ( ) ) ;
}

}

s t a t i c p u b l i c c l a s s ecDSA256
ex tends JDKDSASigner

{

p u b l i c ecDSA256 ( )
{

super ( new SHA256Digest ( ) , new ECDSASigner ( ) ) ;
}

}

}

Code excerpt 3.6: JDKDSASigner nested classes

As can be seen in code excerpt 3.6, class ECDSASigner is used as a parameter to constructors

of class JDKDSASigner, together with a class implementing a cryptographic hash algorithm. JD-

KDSASigner will compute the parts of the ECDSA algorithm related with the hash function and

will use the class ECDSASigner to compute the signature and verification primitives, by calling

the ECDSASigner methods generateSignature and verifySignature, respectively.

p u b l i c B i g I n t e g e r [ ] g e n e r a t e S i g n a t u r e (
byte [ ] message )

{

B i g I n t e g e r n = key . g e t P a r a m e t e r s ( ) . getN ( ) ;
B i g I n t e g e r e = c a l c u l a t e E ( n , message ) ;
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B i g I n t e g e r r = n u l l ;
B i g I n t e g e r s = n u l l ;

/ / 5 . 3 . 2
do / / g e n e r a t e s
{

B i g I n t e g e r k = n u l l ;
i n t n B i t L e n g t h = n . b i t L e n g t h ( ) ;

do / / g e n e r a t e r
{

do
{

k = new B i g I n t e g e r ( nBi tLeng th , random ) ;
}

whi le ( k . e q u a l s (ZERO) ) ;

ECPoint p = key . g e t P a r a m e t e r s ( ) . getG ( ) . m u l t i p l y ( k ) ;

/ / 5 . 3 . 3
B i g I n t e g e r x = p . getX ( ) . t o B i g I n t e g e r ( ) ;

r = x . mod ( n ) ;
}

whi le ( r . e q u a l s (ZERO) ) ;

B i g I n t e g e r d = ( ( E C P r i v a t e K e y P a r a m e t e r s ) key ) . getD ( ) ;

s = k . modInverse ( n ) . m u l t i p l y ( e . add ( d . m u l t i p l y ( r ) ) ) . mod ( n ) ;
}

whi le ( s . e q u a l s (ZERO) ) ;

B i g I n t e g e r [ ] r e s = new B i g I n t e g e r [ 2 ] ;

r e s [ 0 ] = r ;
r e s [ 1 ] = s ;

re turn r e s ;
}

p u b l i c boolean v e r i f y S i g n a t u r e (
byte [ ] message ,
B i g I n t e g e r r ,
B i g I n t e g e r s )

{

B i g I n t e g e r n = key . g e t P a r a m e t e r s ( ) . getN ( ) ;
B i g I n t e g e r e = c a l c u l a t e E ( n , message ) ;
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/ / r i n t h e range [ 1 , n−1]
i f ( r . compareTo (ONE) < 0 | | r . compareTo ( n ) >= 0)
{

re turn f a l s e ;
}

/ / s i n t h e range [ 1 , n−1]
i f ( s . compareTo (ONE) < 0 | | s . compareTo ( n ) >= 0)
{

re turn f a l s e ;
}

B i g I n t e g e r c = s . modInverse ( n ) ;

B i g I n t e g e r u1 = e . m u l t i p l y ( c ) . mod ( n ) ;
B i g I n t e g e r u2 = r . m u l t i p l y ( c ) . mod ( n ) ;

ECPoint G = key . g e t P a r a m e t e r s ( ) . getG ( ) ;
ECPoint Q = ( ( ECPub l i cKeyParame te r s ) key ) . getQ ( ) ;

ECPoint p o i n t = ECAlgor i thms . sumOfTwoMul t ip l ies (G, u1 , Q, u2 ) ;

B i g I n t e g e r v = p o i n t . getX ( ) . t o B i g I n t e g e r ( ) . mod ( n ) ;

re turn v . e q u a l s ( r ) ;
}

Code excerpt 3.7: ECDSA signature and verification

Code excerpt 3.7 contains the signature and verification primitives. It is easy to correlate the

steps of each method with what SEC establishes to ECDSA, as can bee seen in section 2.4.4.

ECDSA signature and verification primitives require arithmetic over an elliptic curve: point

addition and scalar multiplication.

BC uses the class org.bouncycastle.math.ec.ECPoint to represent a point on a elliptic curve.

Inside this class, it defines two nested classes:

• ECPointFp

• ECPointF2m

ECPointFp and ECPointF2m refere to operations on Fp and F2m , respectively.

Each of these classes implements these operations:

• add;

• subtract;
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• negate;

• twice;

Lets focus on the addition and point doubling on a curve over Fp, for example.

p u b l i c ECPoint add ( ECPoint b )
{

i f ( t h i s . i s I n f i n i t y ( ) )
{

re turn b ;
}

i f ( b . i s I n f i n i t y ( ) )
{

re turn t h i s ;
}

/ / Check i f b = t h i s or b = − t h i s
i f ( t h i s . x . e q u a l s ( b . x ) )
{

i f ( t h i s . y . e q u a l s ( b . y ) )
{

/ / t h i s = b , i . e . t h i s must be doub led
re turn t h i s . t w i c e ( ) ;

}

/ / t h i s = −b , i . e . t h e r e s u l t i s t h e p o i n t a t i n f i n i t y
re turn t h i s . c u r v e . g e t I n f i n i t y ( ) ;

}

ECFie ldElement gamma = b . y . s u b t r a c t ( t h i s . y ) . d i v i d e ( b . x . s u b t r a c t (
t h i s . x ) ) ;

ECFie ldElement x3 = gamma . s q u a r e ( ) . s u b t r a c t ( t h i s . x ) . s u b t r a c t ( b . x ) ;
ECFie ldElement y3 = gamma . m u l t i p l y ( t h i s . x . s u b t r a c t ( x3 ) ) . s u b t r a c t (

t h i s . y ) ;

re turn new ECPoint . Fp ( curve , x3 , y3 ) ;
}

p u b l i c ECPoint t w i c e ( )
{

i f ( t h i s . i s I n f i n i t y ( ) )
{

/ / Twice i d e n t i t y e l e m e n t ( p o i n t a t i n f i n i t y ) i s i d e n t i t y
re turn t h i s ;

}
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i f ( t h i s . y . t o B i g I n t e g e r ( ) . signum ( ) == 0)
{

/ / i f y1 == 0 , t h e n ( x1 , y1 ) == ( x1 , −y1 )
/ / and hence t h i s = − t h i s and t h u s 2 ( x1 , y1 ) == i n f i n i t y
re turn t h i s . c u r v e . g e t I n f i n i t y ( ) ;

}

ECFie ldElement TWO = t h i s . c u r v e . f r o m B i g I n t e g e r ( B i g I n t e g e r . va lueOf
( 2 ) ) ;

ECFie ldElement THREE = t h i s . c u r v e . f r o m B i g I n t e g e r ( B i g I n t e g e r . va lueOf
( 3 ) ) ;

ECFie ldElement gamma = t h i s . x . s q u a r e ( ) . m u l t i p l y (THREE) . add ( c u r v e . a )
. d i v i d e ( y . m u l t i p l y (TWO) ) ;

ECFie ldElement x3 = gamma . s q u a r e ( ) . s u b t r a c t ( t h i s . x . m u l t i p l y (TWO) ) ;
ECFie ldElement y3 = gamma . m u l t i p l y ( t h i s . x . s u b t r a c t ( x3 ) ) . s u b t r a c t (

t h i s . y ) ;

re turn new ECPoint . Fp ( curve , x3 , y3 , t h i s . w i thCompress ion ) ;
}

Code excerpt 3.8: Addition on class ECPointFp

The operations are done by methods add and twice. Although P1363 represents the two oper-

ations together and the BC code splits them in two different operations, the presented operations

can be successfully matched against those established in P1363, for elliptic curves arithmetics over

Fp, as can be seen in section 2.4.3.

A note on a safety issue: after studying the code related with operations with elliptic curve

points, it becomes clear that a test to guarantee the two points belong to the same curve isn’t

being done, which can lead to errors if the parameterisations are incorrect. Regarding the scalar

multiplication on a elliptic curve, it is implemented in classes:

• org.bouncycastle.math.ec.FpNafMultiplier

• org.bouncycastle.math.ec.WTauNafMultiplier

The two classes use different algorithms. Because FpNafMultiplier is the done used by default

on BC, lets analyse it.

package org . b o u n c y c a s t l e . math . ec ;

import j a v a . math . B i g I n t e g e r ;

/ * *
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* C l a s s i m p l e m e n t i n g t h e NAF ( Non−A d j a c e n t Form ) m u l t i p l i c a t i o n a l g o r i t h m .

* /

c l a s s F p N a f M u l t i p l i e r implements E C M u l t i p l i e r
{

/ * *
* D. 3 . 2 pg 101

* @see org . b o u n c y c a s t l e . math . ec . E C M u l t i p l i e r # m u l t i p l y ( org . b o u n c y c a s t l e .
math . ec . ECPoint , j a v a . math . B i g I n t e g e r )

* /

p u b l i c ECPoint m u l t i p l y ( ECPoint p , B i g I n t e g e r k , PreCompInfo preCompInfo )
{

/ / TODO Probab ly s h o u l d t r y t o add t h i s
/ / B i g I n t e g e r e = k . mod ( n ) ; / / n == o r d e r o f p
B i g I n t e g e r e = k ;
B i g I n t e g e r h = e . m u l t i p l y ( B i g I n t e g e r . va lueOf ( 3 ) ) ;

ECPoint neg = p . n e g a t e ( ) ;
ECPoint R = p ;

f o r ( i n t i = h . b i t L e n g t h ( ) − 2 ; i > 0 ; −− i )
{

R = R . t w i c e ( ) ;

boolean h B i t = h . t e s t B i t ( i ) ;
boolean e B i t = e . t e s t B i t ( i ) ;

i f ( h B i t != e B i t )
{

R = R . add ( h B i t ? p : neg ) ;
}

}

re turn R ;
}

}

Code excerpt 3.9: ECC Multiplication on Bouncy Castle

Code excerpt 3.9 represents the FpNafMultiplier class on Bouncy Castle. By comparing the

P1363 Scalar Multiplication steps, as presented in section 2.4.3, with the code from class FpNaf-

Multiplier, it is possible to conclude that the method is correctly implemented in the class.

In the same code excerpt, it can be seen that one of the parameters of the method multiply

is an object of the class PreCompInfo, although the object is not used. BC defines the interface

PreCompInfo as a way to classes store precomputation data for multiplication.

After going through the BC ECDSA Signature implementation, it is possible to conclude that

it follows what is established in the standard SEC and also (in the scalar multiplication case) on
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P1363.

Another conclusion is that BC ECDSA does not use a big number of classes on the implemen-

tation of its core and the connections between those classes aren’t difficult to assess. It is easy to

follow the ECDSA implementation form the top class JDKDSASigner to classes like ECPoint that

implement mathematical operations.

3.5 Performance Testing

To see how the Bouncy Castle Crypto APIs behaves in practical terms, some tests were conducted.

It was decided to test one of the ECC based algorithms to check how a pure Java implementation

of ECC behaves in practical terms. The chosen algorithm was ECDSA.

Bouncy Castle comes with a predefined set of elliptic curves. These curves come described

in cryptographic standards because they were tested and proved to be efficient and safe to use in

ECC. In this test, it was used the curve Curve P-192, as described in FIPS 186-2 [31] (see table

3.1).

Two different scenarios are presented in this section: single execution and multi-execution.

The single execution scenario corresponds to a simple execution of the signature and verification

operations. The multi-execution scenario corresponds to the repeated execution of the signature

and verification operations, using the same parameters and keys, with the same message. The idea

is to create a hypothetic scenario where the operation is repeatedly executed and to investigate if

there are any performance gains.

curve parameter value in hexadecimal
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF (192 bits)
a FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC
b 64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1

Gx 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
Gy 07192b95ffc8da78631011ed6b24cdd573f977a11e794811

Table 3.1: Curve P-192 parameters
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Signature Verification
1 79 56
2 51 63
3 109 103
4 99 142
5 82 85
6 115 111
7 110 68
8 82 121
9 94 104
10 97 88

Average 91,8 94,1

Table 3.2: ECDSA single execution times in mil-
liseconds

Signature Verification
1 169 62
2 29 28
3 22 23
4 34 27
5 22 31
6 21 26
7 20 25
8 28 28
9 22 28
10 20 25

Average 38,7 30,3

Table 3.3: ECDSA multi-execution times in mil-
liseconds

Bouncy Castle provider was dynamically installed using the package bcprov-jdk15-139.jar.

This package is signed by Sun Microsystems.

Table 3.2 and 3.3 contains the measured times of single executions of ECDSA and multi-

execution of ECDSA, respectively. Each scenario was repeated several times in order to reduce

the influence of the randomised nature of the algorithms. One is able to conclude that in the multi-

execution scenario there is a decrease of 57,8% on the Signature time and a decrease of 67,6% in

the Verification time. The execution times do not consider input and output operations or represent

the total times of execution of the programs. The only operations that were considered were those

directly related with the algorithms of signature and verification.

So, in fact there are performance gains when ECDSA is repeatedly executed. This difference

is mostly due to the class loading mechanism of Java, but a deeper study of this speedup falls out

of the scope of this project.
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4
Identity-Based Cryptography

The purpose of this chapter is to introduce an implementation in Java of Identity-Based Cryptogra-

phy, in particular an Identity-Based Encryption (IBE) scheme. Implementations of Identity-Based

Cryptography are usually based on the mathematical concept of bilinear pairings, so the basic

concepts of bilinear pairings are also presented.

4.1 Identity-Based Encryption

Identity-Based Cryptography was introduced by Shamir [32] back on the year of 1984. The pro-

posed concept is quite innovative. Instead of using the public key contained on a digital certificate

for encryption and signature verification, information related with the identity of the user can be

used as the public key. This means that the complexity involved with the Public Key Infrastructure

(PKI) can be avoided.

A simplified outline of the steps involved in a IBE encryption scheme is presented. The in-

volved parts are a Private Key Generator (PKG) which is a trusted third-party, the sender and the

receiver.

Setup PKG generates its private key (known as master key) and public key.

Encryption Using the receiver’s identity and the PKG’s public key, the sender is able to encrypt

the plaintext M and obtain the ciphertext C.

Private Key Extraction The receiver of the message authenticates itself to the PKG and receives

its own private key associated with his identity. This identity can be, as mentioned earlier, a

43



4.2. BILINEAR PAIRINGS

string such as email.

Decryption When the receiver gets the ciphertext C from the sender, uses its private key to re-

cover the original message M.

4.1.1 Advantages and drawbacks

As stated before, IBE can be used as an alternative to the traditional PKI which uses digital cer-

tificates. Many of the problems inherent with managing certificates can be eliminated. In IBE it is

also possible to encrypt a message even before the person for whom the message is destinated has

generated a key pair. The person that sends the message can include in the identification string a

set of conditions that must be met by the receiver before the PKG issues the private key. On the

other hand, IBE forces the existence of a PKG that generates the private keys. As a result, the

PKG can decrypt or sign any messages. Because of this, the level of trust on this third party has

to be absolute. This is called the key escrow problem . As a possible solution to this, Boneh and

Franklin [33] proposed a solution that involves sharing the master secret key of the PKG between

PKGs using Shamir’s secret sharing technique [34]. The user would obtain partial private key

shares from each one of them and then reconstruct the whole key. This solution isn’t ideal since

the multiple authentications to PKGs generate big communication and computational costs [35].

Another two drawbacks of the IBE scheme are the need of a secure channel between the user and

the PKG, so the private key can be safely transmitted and the potential heavy workloads imposed

on a single PKG, though a solution to this problem has been suggested by Gentry and Silverberg

by the means of a hierarchical IBE. [36]. .

4.2 Bilinear pairings

Bilinear pairings over elliptic curves were initially used in cryptography as an attack that rendered

supersingular curves insecure [37]. Later, it was found that the same technique can be employed

in the construction of cryptographic schemes

Joux [38] proposed bilinear pairings to solve the problem of a three-party one-round key

agreement that is secure against eavesdroppers [39]. This breakthrough called the attention of

cryptographers to the use of pairings in other applications. Boneh and Franklin [33] proposed an

identity-based encryption scheme using pairings and Boneh, Lynn and Shacham proposed a short

signature scheme [40] also based on pairings.

This introduction is adapted from Menezes [39]. A bilinear pairing on (G1,GT ) is a map:

ê : G1 ×G1 → GT (4.1)

where n is a prime number, G1 = 〈 P 〉 an additively-written group of order n with identity

∞ and GT a multiplicatively-written group of order n with identity 1, such that the following
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conditions hold:

1. (bilinearity) For all R, S ,T ∈ G1, ê(R+S ,T ) = ê(R,T )ê(S ,T ) and ê(R, S +T ) = ê(R, S )ê(R,T )

2. (non-degeneracy) ê(P, P) , 1

3. (computability) ê can be efficient computed

Fromm the above properties, one can easily derive:

1. ê(S ,∞) = 1 and ê(∞, S ) = 1

2. ê(S ,−T ) = ê(−S ,T ) = ê(S ,T )−1

3. ê(aS , bT ) = ê(S ,T )ab for all a, b ∈ Z

4. ê(S ,T ) = ê(T, S )

5. If ê(S ,R) = 1 for all R ∈ G1, then S = ∞

The security of many pairing-based protocols relies on the intractability of the Bilinear Deci-

sional Diffie-Hellman Problem (BDHP):

• Let ê be a bilinear pairing on (G1,GT ). The Bilinear Decisional Diffie-Hellman Problem is

the following: Given (P, aP, bP, cP) compute ê(P, P)abc

4.2.1 Boneh and Franklin Scheme

Shamir [32] constructed an identity based signature (IBS) scheme, but the construction of a iden-

tity based encryption (IBE) scheme was left as an open problem. This problem was independently

solved by Boneh and Franklin [33] and Cocks [41] in 2001.

The following mathematical description is adapted from Menezes [39]. The scheme proposed

by Boneh and Franklin [33] uses a bilinear pairing ê on (G1,GT ) for which the BDHP is intractable

and two hash functions:

H1 : {0, 1}∗ → G1\{∞} (4.2)

H2 : GT → {0, 1}l (4.3)

where l is the bitlength of the plaintext. The PKG randomly selects an integer t ∈ [1, n − 1]

and computes its public key T = tP, where P is a generator of G1 Lets imagine an interaction

between two people, Alice and Bob (Alice and Bob are typically used to describe cryptographic

algorithms). Alice requests her private key da. The PKG creates Alice’s identity string IDA and
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computes da = tH1(IDA), delivering it to Alice through a secure channel. To encrypt a message

m ∈ {0, 1}l for Alice (using the basic Boneh-Franklin scheme [33]), Bob computes:

QA = H1(IDA) (4.4)

r ∈ [1, n − 1] (4.5)

R = rP (4.6)

c = m ⊕ H2(ê(QA,T )r) (4.7)

After this, the ciphertext (R, c) is transmitted to Alice. To decrypt the ciphertext, Alice com-

putes

m = c ⊕ H2(ê(dA,R)) (4.8)

because:

ê(dA,R) = ê(tQA, rP) = ê(QA, tP)r = ê(QA,T )r (4.9)

Anyone, other than Alice, who wishes to recover m from (R, c) most compute ê(QA,T )r given

(P,QA,T,R). This is an instance of the BDHP and precisely where the cryptographic strength of

IBE resides.

The principles of Identity-Based Encryption can be extended to an Identity-Based Signature

scheme, as described in A Survey of Identity-Based Cryptography [35].

4.3 IBE in Java

Owens, Duffy and Downling [42] have implemented the IBE system of Boneh and Franklin [33]

scheme, entirely in Java. This is something new, because the previous known implementations of

IBE were developed using C/C++. Shamus Software’s MIRACL [43] is one of those implementa-

tions. On the website of the project [44], the source code is available, just as all the jar files needed

to use the software. The program is designed as a JCA provider and because it implements a new

Cipher class, the jar file that contains the project’s compiled code is signed by Sun. This is a Sun’s

requirement to protect sensitive parts of the framework (see [29] for more informations).

The authors of the project used an existing elliptic curve cryptosystem implementation [45]

and concentrated the efforts on the implementation of the bilinear pairing that IBE uses.
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parameter value in hexadecimal
p D535ED880BA061BB05A34E83D82E6271B2ED7D8207C0EF5C9CE7F72A6BB-

E5C1EF1F5956CB0BCB629D0F64608333C87662CEA3F08-
D229BE8FA209861E66B3BBB (512 bits)

q 8000000000000000000000000000000000020001
l 1AA6BDB101740C3760B469D07B05CC4E365D451514E69CB95FD7642DE-

C2CBD00169F791958529BA7B6EF33BBC

Table 4.1: IBE parameters

4.3.1 Performance testing

To test this implementation, one hybrid cryptosystem was developed. The idea is to:

1. Use a symmetric key to cipher the data

2. Use the IBE encryption scheme to cipher the symmetric key

The selected algorithm for symmetric key cryptography is AES using 128 bits keys.

To create the test class, it was used the sample code suggested by the authors in the website

[42], with some minor modifications. One of them is the hashing algorithm: SHA-256 was used.

The bilinear pairing used was Tate (implemented in the class ModifiedTatePairing).

The algorithm used a super-singular curve of form y2 = x3 + 1. Table 4.1 contains the parame-

ters related to the underlying field Fp according to the formula p = lq−1. The modulus of p is 512

bits. These parameters were used in this test because they come by default in the IBE implemen-

tation of MIRACL, which will be addressed further ahead in this document. The parameters were

supplied to the program by using in the code, the constructor ModifiedTatePairing( BigInteger p,

BigInteger q, BigInteger l ) available in the class ModifiedTatePairing.

The execution times do not consider input and output operations or represent the total times of

execution of the programs. The only operations that were considered were those directly related

with encryption and decryption.

Table 4.2 shows the times the IBE scheme in Java took to cipher and decipher an 128 bytes

AES key in isolated executions. Table 4.3 contains the times obtained on a multi-execution sce-

nario. The performance increase is not significant: 5,6% on the encryption stage and 3,1% on the

decryption counterpart. The heavy workload that the calculations of pairings imposes doesn’t al-

low higher performances even on a multi-execution scenario, where some optimisations are likely

to appear, as seen in section 3.5.

Another interesting point are the values of the execution times. The average times obtained

can be considered very high, although is important to bear in mind that the project is still in the

early stages and many improvements can be done.

Results apart, the authors of the project should be praised for the initiative because is ground-

breaking.
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Encryption Decryption
1 5260 3454
2 5161 3416
3 5115 3438
4 5119 3447
5 5095 3424
6 5092 3419
7 5092 3390
8 5099 3459
9 5270 3476
10 5117 3456

Average 5142 3447,9

Table 4.2: IBE single execution times in millisec-
onds

Encryption Decryption
1 5021 3396
2 4845 3348
3 4811 3356
4 4855 3332
5 4773 3322
6 4843 3346
7 4796 3317
8 4843 3327
9 4846 3326
10 4849 3326

Average 4848,2 3339,6

Table 4.3: IBE multi-execution times in millisec-
onds
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Searching for efficiency

Ever since the use of the Java language began to increase, its performance during heavy calcu-

lations has been questioned by many. Typically, scientific calculations require heavy computer

work. These programs are normally developed in Fortran or C/C++. So, the use of Java to imple-

ment cryptographic algorithms that use heavy mathematical primitives, just as IBE does, can in

fact raise some questions related with performance. The purpose of this chapter is not to discuss if

and why Java is slower than other languages. That’s still part of a debate in the programmers com-

munity. But for that matter, there are many investigations, for example [46, 47] that propose ways

of improving the Java Virtual Machine (JVM) performance. In the following sections, will be

presented tests made with implementations of cryptographic algorithms in C++ and a possibility

of increasing Java based implementations performance using C++.

5.1 Testing with C++

It was decided to use cryptographic software based on C/C++ to conduct some tests. As stated

earlier, the family C/C++ has a good reputation on computing hard calculations. Therefore, it was

needed some cryptographic implementation preferably released as open-source, thus enabling the

access to the source code. The choice was MIRACL, presented in the next section.

5.1.1 MIRACL

Shamus Software MIRACL [43] is a Big Number Library designed to support Big Number Cryp-

tography. It has it’s website at http://www.shamus.ie.
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It is primarily a tool for cryptographic system implementors. RSA public key cryp-

tography, Diffie-Hellman Key exchange, DSA digital signature, they are all just a few

procedure calls away (...) MIRACL now provides more support for conventional cryp-

tography. The latest version implements the Advanced Encryption Standard (AES),

Modes of Operation, and the new hashing standards SHA-160/256/384/512. [43]

The installation instructions can be found within the zip file that can be downloaded with all

the source code. User and Reference manuals can also be found on the website.

MIRACL comes with ready to execute programs for the Windows platform and more than

25 example programs provided in both C/C++ versions. Two of these example programs are of

special interest within scope of his work:

• ECDSA implementation

• IBE implementation

It was decided to do the tests with the C++ versions. No performance issues were involved in

this decision.

The ECDSA implementation is organized like this (these comments may be found on the file’s

headers):

common.ecs contains the domain information (p, A, B, q, x, y), where A and B are curve parame-

ters, (x, y) is a point of order q and p is the prime modulus (base field).

ecsgen.cpp generates one set of public and private keys in files public.ecs and private.ecs respec-

tively.

ecsign.cpp signs a file whose name <file> is inputed by the user and outputs the signature to a

file <file>.ecs. Need the private key file and common.ecs

ecsver.cpp This program verifies the signature given to a <file> in <file>.ecs generated by pro-

gram ecsign. Needs the files public.ecs and common.ecs

Each one of this .cpp files is dependent of files:

big.cpp This class is used to represent big numbers.

ecn.cpp This class is used to implement elliptic curves and it’s arithmetics.

The IBE scheme is organized as so (these comments may be found on the file’s headers):

ibe set.cpp Creates the files common.ibe and master.ibe.

common.ibe This file contains the parameters used on the IBE scheme.
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• Size of prime modulus in bits

• Prime p

• Prime q (divides p+1)

• Point P - x coordinate

• Point P - y coordinate

• Point Ppub - x coordinate

• Point Ppub - y coordinate

• Cube root of unity in Fp2 - x component

• Cube root of unity in Fp2 - y component

master.ibe Contains the PKG master key.

ibe ext.cpp This program extracts a private (secret) key from the identity string inputed by the

user and stores it in the file private.ibe

ibe enc.cpp Generates a random AES session key, and uses it to encrypt a file. Outputs ciphertext

to <file>.ibe. The session key is IBE encrypted, and written to <file>.key. The user inputs

a string that will be used to compute the public key, according to the IBE scheme.

ibe dec.cpp Decrypts a file<file>.ibe. Finds the session key by IBE decrypting the file<file>.key.

Uses this session key to AES decrypt the file. The IBE private key used is in private.ibe.

Besides big.cpp and ecn.cpp, the above .cpp files are dependent of:

zzn.cpp Definition of class ZZn (Arithmetic mod n), using Montgomery’s Method for modular

multiplication

zzn2.cpp Arithmetic over n2

5.1.2 MIRACL results

The idea was to measure the performance times of MIRACL during:

• ECDSA signature generation

• ECDSA signature verification

• IBE encryption of a 128 bytes AES key

• IBE decryption of the same key
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Tests were made with single executions and with multi-executions. Again, the execution times

do not consider input and output operations or represent the total times of execution of the pro-

grams. The only operations that were considered were those directly related with the algorithms

of signature and verification in the ECDSA case and encryption and decryption in the IBE case.

Signature Verification
1 13,5 14,3
2 13,4 14,2
3 13,4 14,0
4 13,3 14,0
5 13,5 16,6
6 13,6 14,2
7 20,2 14,2
8 13,6 14,1
9 8,1 14,4
10 13,5 14,0

Average 13,62 14,37

Table 5.1: MIRACL ECDSA single execution
times in milliseconds

Signature Verification
1 13,6 14,2
2 13,2 14,1
3 13,6 13,1
4 8,0 8,4
5 8,2 8,5
6 8,0 8,5
7 8,0 8,5
8 8,0 8,5
9 8,0 8,6
10 8,1 8,4

Average 9,67 10,1

Table 5.2: MIRACL ECDSA multi-execution
times in milliseconds

Table 5.1 shows the measured times of single executions of ECDSA. Table 5.2 contains the

execution times measured for ECDSA in the multi-execution scenario. By analysing the data, it is

possible to verify that in the multi-execution scenario there is a decrease of about 29% and 25%

on the average time, for Signature and Verification, respectively.

Encryption Decryption
1 21,8 19,4
2 21,9 19,6
3 21,8 19,6
4 21,6 19,8
5 21,9 19,5
6 21,7 19,6
7 21,7 19,7
8 21,6 19,6
9 21,6 19,6
10 21,7 19,6

Average 21,73 19,6

Table 5.3: MIRACL IBE single execution times
in milliseconds

Encryption Decryption
1 21,6 19,5
2 21,6 19,4
3 21,6 19,5
4 21,7 19,4
5 21,6 19,4
6 21,6 19,4
7 21,6 20,5
8 21,6 19,9
9 21,6 19,4
10 21,6 19,5

Average 21,6 19,4

Table 5.4: MIRACL IBE multi-execution times
in milliseconds

Table 5.3 shows the measured times of single executions of IBE using MIRACL. Table 5.4

has the times measured for the same algorithm, but for multi-executions achieved using a cycle

in the source code. By analysing both tables, it can been seen that there is almost no variation of

execution times in the multi-executions scenario.
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Again, without going into details that are outside the scope of this work, it is fair to conclude

that the heavy calculations on the IBE scheme,specially those related with pairings, don’t allow a

increase of performance even when in a multi-execution scenario, contrarily to the ECDSA case

where there is a decrease of times when the algorithm is repeatedly executed.

5.1.3 Comparison with Java results

After finishing the tests, it is clear that the MIRACL implementation is much more faster than the

one written in Java. The results displayed in this section are only those regarding single executions.

However, there are somethings to bear in mind when analysing the results:

• MIRACL is optimised. It is designed to be fast, to achieve good performances.

• The IBE implementation in JAVA is still at the early stages. The authors [42] emphasise the

fact that there’s plenty of room for improvements.

Figure 5.1 shows how MIRACL is faster than Bouncy Castle. Nevertheless, Bouncy Castle

can still be considered as having a reasonable performance. Figure 5.2 is quite clear about the dif-

ferences between the performances of the IBE implementations. While encrypting and decrypting

an 128 bits AES key is almost instantaneous on MIRACL, it takes a few seconds to do it with the

IBE Java implementantion. In fact, the IBE Java implementation results leave a good room for

improvements.
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Figure 5.1: ECDSA comparison

Figure 5.2: IBE comparison
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5.2 Embedding C++ into Java

After conducting the tests presented in the previous sections and analysing the results, it was

decided to embed some of the C++ MIRACL functions into the Java programs: the IBE scheme

and Bouncy Castle’s ECDSA. The objective was to achieve greater performance in Java by using

the power of MIRACL to compute the operations that impose greater workload on the computer:

• Bilinear pairings calculations

• Elliptic curves arithmetics

While making the preparations to edit the source code of the IBE scheme on Java, a setback

emerged. JCA requires that providers that implement Cipher objects to be digitally signed by Sun

Microsystems. So, it was impossible to develop and test a new provider from the source code

because a new Cipher instance was to be created and therefore a signature for the provider was

needed. This requirement and the process to obtain the signed provider are described in [48].

Instead of using the JCA provider architecture, it is possible to manually instantiate the classes

and call all the necessary methods, something that JCA mechanism does automatically, but this

solution is more complicated from a programmer’s point of view and was initially intended to

use the program as a JCA provider. Due to time constraints, an alternative solution was sought.

It was found that there are clean-room implementations of javax.crypto packages (BC distributes

one). By using this packages, one is able to replace or supercede the jce.jar file that comes with

the JVM, thus being able to use non-signed providers. The packages made available by the GNU

Crypto project [49] were used for this purpose. Unfortunately, this alternative also raised some

compilation problems. And again due to time constraints, embedding C++ into the Java IBE

scheme had to be put postponed.

The problems raised by the IBE scheme don’t apply to the Bouncy Castle ECDSA. Since it is a

signature algorithm, the JVM doesn’t need to authenticate the provider, unlike what happens with

ciphers. So the tests that were made consist on embedding C++ into the Bouncy Castle ECDSA.

This was achieved by using the Java Native Interface (JNI).

Note that, even if IBE testing was postponed, it is expectable that the performance gains ob-

tained for IBE to be significantly more substantial since, as it was shown above, the gap between

the performance of the C++ and Java implementations is much bigger.

5.2.1 Java Native Interface

Java Native Interface is a framework that allows Java code to call and be called by native applica-

tions or libraries written in other languages. The most complicated part of using JNI is mapping

the types between the different languages. In this particular case it is needed to call a C++ pro-

cedure in a Java class. The JNI engine will automatically convert the Java native types to its own

internal types, but on the C++ function being called it is necessary to convert from JNI types to
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C++ native types and return the result on a JNI type. Again, JNI will automatically convert its

types to the Java native ones and so Java and C++ are able to pass data among them. For more

information about JNI, please refer to [50].

5.2.2 Calling the C++ procedures

The first thing to do is to identify which operation of the ECDSA algorithm will be computed by

the MIRACL. By analysing the ECDSA specification, as defined in section 2.4.4 it was decided to

pass to C++ the burden of computing elliptic curve arithmetics.

In the signature part:

• Compute kG where k is a random integer 1 ≤ k ≤ n − 1 and G is the generator point of the

elliptic curve. This operation corresponds to Step 1 of ECSP-DSA, as seen in section 2.4.4.

In the verification part:

• Compute X = u1G + u2QA where u1 = ew mod n, u2 = rw mod n, w = s−1, e = hash(m).

s is part of the signature (r, s), m is the message being signed and QA is the signer’s public

key. This operation corresponds to Step 3 of ECVP-DSA, as seen in section 2.4.4.

The steps needed to be taken to call the C++ functions are presented next.

JNI is used to generate a header file. This file will be used by the C++ file that implements the

code. The file is generated once the methods are declared on the Java class, by calling the method:

• javah -jni <java class name>

The most complex part is done in the C++ side.

1. Include the libraries jni.h and the header file generated by JNI.

2. Codifying the body of the functions declared on the Java side.

3. Make the necessary type conversion between JNI types and C++ native types.

4. Once the code is complete, create a library so that the Java class can access the methods. In

Windows, this library will be a .DLL (Dynamic-Link Library) file. On Unix based systems,

a .SO file (shared object). Note that by creating libraries according to the operating system,

the Java program that uses them will loose its mobility. For example. if it uses a .SO library,

it will not run on a Windows platform.

JNIEXPORT j o b j e c t A r r a y JNICALL
J a v a o r g b o u n c y c a s t l e c r y p t o s i g n e r s E C D S A S i g n e r k G

( JNIEnv *env , j o b j e c t obj , j s t r i n g a , j s t r i n g b , j s t r i n g q , j s t r i n g gx ,
j s t r i n g gy , j s t r i n g k )
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{

m i r a c l *mip = &p r e c i s i o n ;
j o b j e c t A r r a y r e t ;

char s t r r e s x [ 1 0 0 0 0 0 ] ;
char s t r r e s y [ 1 0 0 0 0 0 ] ;

Big b i g a , b ig b , b ig q , b ig gx , b ig gy , b ig k , r e s x , r e s y ;
ECn G,W;
c o n s t char * s t r a , * s t r b , * s t r q , * s t r g x , * s t r g y , * s t r k ;

s t r a = ( env )−>GetS t r ingUTFChars ( a , NULL) ;
s t r b = ( env )−>GetS t r ingUTFChars ( b , NULL) ;
s t r q = ( env )−>GetS t r ingUTFChars ( q , NULL) ;
s t r g x = ( env )−>GetS t r ingUTFChars ( gx , NULL) ;
s t r g y = ( env )−>GetS t r ingUTFChars ( gy , NULL) ;
s t r k = ( env )−>GetS t r ingUTFChars ( k , NULL) ;

r e t = ( j o b j e c t A r r a y ) env−>NewObjectArray ( 2 ,
env−>F i n d C l a s s ( "java/lang/String" ) ,
env−>NewStringUTF ( "" ) ) ;

mip−>IOBASE=16;
/ / x= s t r ;
b i g a =( char *) s t r a ;
b i g b =( char *) s t r b ;
b i g q =( char *) s t r q ;
b i g g x =( char *) s t r g x ;
b i g g y =( char *) s t r g y ;
b i g k =( char *) s t r k ;

mip−>IOBASE = 1 0 ;
e c u r v e ( b i g a , b ig b , b ig q , MR PROJECTIVE ) ;
/ / G=ECn ( b i g g x , b i g g y ) ;

i f ( !G. s e t ( b ig gx , b i g g y ) )
{

c o u t << "Problem - point (x,y) is not on the curve" << e n d l ;
/ / r e t u r n 0 ;

}

W=G;
W *= b i g k ;

mip−>IOBASE=16;
W. g e t ( r e s x , r e s y ) ;

57



5.2. EMBEDDING C++ INTO JAVA

s t r r e s x << r e s x ;
s t r r e s y << r e s y ;

env−>S e t O b j e c t A r r a y E l e m e n t ( r e t , 0 , env−>NewStringUTF ( s t r r e s x ) ) ;
env−>S e t O b j e c t A r r a y E l e m e n t ( r e t , 1 , env−>NewStringUTF ( s t r r e s y ) ) ;

( env )−>R e l e a s e S t r i n g U T F C h a r s ( a , s t r a ) ;
( env )−>R e l e a s e S t r i n g U T F C h a r s ( b , s t r b ) ;
( env )−>R e l e a s e S t r i n g U T F C h a r s ( q , s t r q ) ;
( env )−>R e l e a s e S t r i n g U T F C h a r s ( gx , s t r g x ) ;
( env )−>R e l e a s e S t r i n g U T F C h a r s ( gy , s t r g y ) ;
( env )−>R e l e a s e S t r i n g U T F C h a r s ( k , s t r k ) ;

re turn r e t ;

Code excerpt 5.1: Implementing the method that computes kG

Code excerpt 5.1 illustrates the mapping that is made from JNI types to C++ native types and

vice-versa. Once in possession of the parameters in the C++ types, the computations are done in

a normal fashion. Then the result is passed again to a JNI type, to be returned to the calling Java

class.

On the Java side we need to modify the class ECDSASigner, particularly the methods gen-

erateSignature and verifySignature, because as seen in section 3.4, it implements the ECDSA

signature and verification primitives:

1. Call the external library on the Java class. This the library that contains the MIRACL func-

tions.

2. Declare the new methods that will be called. These methods will be implemented on the

C++ side.

3. If necessary, make type conversions to fit the methods being called.

s t a t i c {

System . l o a d L i b r a r y ( "miracl" ) ;
}

p u b l i c n a t i v e S t r i n g [ ] kG ( S t r i n g a , S t r i n g b , S t r i n g p , S t r i n g Gx , S t r i n g Gy ,
S t r i n g k ) ;

p u b l i c n a t i v e S t r i n g [ ] U2PubU1G ( S t r i n g a , S t r i n g b , S t r i n g p , S t r i n g Gx , S t r i n g
Gy , S t r i n g u2 , S t r i n g pubX , S t r i n g pubY , S t r i n g u1 ) ;

Code excerpt 5.2: Declarations on the Java class
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In the code excerpt 5.2 it is possible to see the method that calls the external library and also

the declarations of the methods that will be used. The body of this method will be on the C++ side,

as implemented in code excerpt 5.1. The methods pass to the MIRACL side the curve parameters,

public key parameters, as well the elements of the computations that will be done. Method kG will

be used on the signature part; U2PubU1G will be used on the verification part.

B i g I n t e g e r b i q = ( ( ECCurve . Fp ) key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) ) . getQ ( ) ;
S t r i n g q= b i q . t o S t r i n g ( 1 6 ) ;
S t r i n g Gx = key . g e t P a r a m e t e r s ( ) . getG ( ) . getX ( ) . t o B i g I n t e g e r ( ) . t o S t r i n g ( 1 6 ) ;
S t r i n g Gy = key . g e t P a r a m e t e r s ( ) . getG ( ) . getY ( ) . t o B i g I n t e g e r ( ) . t o S t r i n g ( 1 6 ) ;
S t r i n g a = key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) . getA ( ) . t o B i g I n t e g e r ( ) . t o S t r i n g ( 1 6 ) ;
S t r i n g b = key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) . getB ( ) . t o B i g I n t e g e r ( ) . t o S t r i n g ( 1 6 ) ;
S t r i n g kapa = k . t o S t r i n g ( 1 6 ) ;

S t r i n g o b j [ ]= new S t r i n g [ 2 ] ;
o b j=kG ( a , b , q , Gx , Gy , kapa ) ;

B i g I n t e g e r f a s t g x = new B i g I n t e g e r ( o b j [ 0 ] , 1 6 ) ;
B i g I n t e g e r f a s t g y = new B i g I n t e g e r ( o b j [ 1 ] , 1 6 ) ;

ECFie ldElement . Fp f e x = new ECFie ldElement . Fp ( b i q , f a s t g x ) ;
ECFie ldElement . Fp f e y = new ECFie ldElement . Fp ( b i q , f a s t g y ) ;

ECPoint . Fp p = new ECPoint . Fp ( key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) , fex , f e y ) ;

Code excerpt 5.3: Conversions in the Java class

In code excerpt 5.3 it is possible to see some type conversions needed inside the Java class

(in the method generateSignature, in this case). All the parameters are represented as BigInteger.

So, it was decided to convert them to hexadecimal strings to be passed to the C++. It can be

seen the method kG being called and the result being obtained. Each invocation of the method

kG is stateless. The parameters are always passed to the C++ side which constructs its own

representation of the elliptic curve. There is no state that is saved in the C++ side from one

invocation to another. A few more conversions follow and then finally the point P is obtained as

the result of computing kG on the C++ side. After this point, the Java method resumes execution

and so the remaining steps of the algorithm will be executed.

p u b l i c B i g I n t e g e r [ ] g e n e r a t e S i g n a t u r e (
byte [ ] message )

{

B i g I n t e g e r n = key . g e t P a r a m e t e r s ( ) . getN ( ) ;
B i g I n t e g e r e = c a l c u l a t e E ( n , message ) ;
B i g I n t e g e r r = n u l l ;
B i g I n t e g e r s = n u l l ;
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/ / 5 . 3 . 2
do / / g e n e r a t e s
{

B i g I n t e g e r k = n u l l ;
i n t n B i t L e n g t h = n . b i t L e n g t h ( ) ;

do / / g e n e r a t e r
{

do
{

k = new B i g I n t e g e r ( nBi tLeng th , random ) ;
}

whi le ( k . e q u a l s (ZERO) ) ;

B i g I n t e g e r b i q = ( ( ECCurve . Fp ) key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) ) . getQ
( ) ;

S t r i n g q= b i q . t o S t r i n g ( 1 6 ) ;
S t r i n g Gx = key . g e t P a r a m e t e r s ( ) . getG ( ) . getX ( ) . t o B i g I n t e g e r ( ) .

t o S t r i n g ( 1 6 ) ;
S t r i n g Gy = key . g e t P a r a m e t e r s ( ) . getG ( ) . getY ( ) . t o B i g I n t e g e r ( ) .

t o S t r i n g ( 1 6 ) ;
S t r i n g a = key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) . getA ( ) . t o B i g I n t e g e r ( ) .

t o S t r i n g ( 1 6 ) ;
S t r i n g b = key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) . getB ( ) . t o B i g I n t e g e r ( ) .

t o S t r i n g ( 1 6 ) ;
S t r i n g kapa = k . t o S t r i n g ( 1 6 ) ;

S t r i n g o b j [ ]= new S t r i n g [ 2 ] ;
o b j=kG ( a , b , q , Gx , Gy , kapa ) ;

B i g I n t e g e r f a s t g x = new B i g I n t e g e r ( o b j [ 0 ] , 1 6 ) ;
B i g I n t e g e r f a s t g y = new B i g I n t e g e r ( o b j [ 0 ] , 1 6 ) ;

ECFie ldElement . Fp f e x = new ECFie ldElement . Fp ( b i q , f a s t g x ) ;
ECFie ldElement . Fp f e y = new ECFie ldElement . Fp ( b i q , f a s t g y ) ;

ECPoint . Fp p = new ECPoint . Fp ( key . g e t P a r a m e t e r s ( ) . g e t C u r v e ( ) , fex ,
f e y ) ;

/ / 5 . 3 . 3
B i g I n t e g e r x = p . getX ( ) . t o B i g I n t e g e r ( ) ;

r = x . mod ( n ) ;
}

whi le ( r . e q u a l s (ZERO) ) ;
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B i g I n t e g e r d = ( ( E C P r i v a t e K e y P a r a m e t e r s ) key ) . getD ( ) ;

s = k . modInverse ( n ) . m u l t i p l y ( e . add ( d . m u l t i p l y ( r ) ) ) . mod ( n ) ;
}

whi le ( s . e q u a l s (ZERO) ) ;

B i g I n t e g e r [ ] r e s = new B i g I n t e g e r [ 2 ] ;

r e s [ 0 ] = r ;
r e s [ 1 ] = s ;

re turn r e s ;
}

Code excerpt 5.4: New version of method generateSignature

The full code of the modified method generateSignature is in code excerpt 5.4. This can be

compared to the original code showed in code excerpt 3.7. Apart from the type conversions, the

code remains the same.

The code excerpts only illustrate the function kG and the modified method generateSigna-

ture of class ECDSASigner, but the same method and principles were applied to the function

U2PubU1G and to the method verifySignature of the same class.

5.3 Results

In this section are displayed the results of the tests with Bouncy Castle with C++ embedded.

Signature Verification
1 7 21
2 7 21
3 9 21
4 28 55
5 32 40
6 8 45
7 7 42
8 16 20
9 8 22
10 8 20

Average 13 30,7

Table 5.5: BC with MIRACL single execution
times in milliseconds

Signature Verification
1 23 19
2 5 4
3 3 4
4 3 10
5 4 4
6 4 4
7 3 4
8 20 10
9 5 14
10 9 4

Average 7,9 7,7

Table 5.6: BC with MIRACL multi-execution
times in milliseconds

Tables 5.5 and 5.6 represent the tests made with single and multi-execution scenarios.
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Figure 5.3: Bouncy Castle versus Bouncy Castle optimised

Figure 5.3 illustrates the performance increase that took place by using C++ in the Bouncy

Castle ECDSA. The data comes from tables 3.2 and 5.5. There was a decrease of 85% in the

signature time and a decrease of 67,3% on the verification time. These values leave no margin

for error: despite the necessary type conversions, it pays off greatly to let MIRACL compute the

heavier calculations. As stated before, the same principle can theorically be applied to the IBE

implementation and bigger performance gains can be expected.
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6
Conclusions and further work

In this chapter, the conclusions of this work are presented, as well the suggestions for further work.

6.1 Conclusions

As closing remarks of this work, some solid conclusions may be drawn from the results presented

on the previous chapters. Bouncy Castle is an example of how cryptographic API’s written in

Java can be well structured and organised, while offering not only the most common and used

cryptographic algorithms, but emerging techniques such as those based on elliptic curves. The

design of these API’s as a Java Cryptography Architecture Provider broadens their availability to

Java programmers.

Bouncy Castle is also an example of how the low level cryptographic standards such as PCKS,

SEC and P1363 can guide the implementation. And by following the standards as technical guides,

the conformance to those standards will be a consequence. In particular and as an example, we

showed how Bouncy Castle follows the standards guidelines on the implementation of RSA en-

cryption and ECDSA signature schemes.

Techniques based on bilinear-pairings are something relatively new on the Cryptography world.

One of the most interesting concepts proposed on this area is the Identity Based Encryption (IBE),

which can be faced as a future alternative to the current Public Key Infrastructure. We presented

a Java implementation of an Identity Based Encryption System. While its a project on its early

stages, it shows a path to the use of bilinear pairing on Java that others can follow.

Throughout this document, performance tests were presented. Two scenarios were showed:
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single and multi-executions. The single execution times correspond to the normal use of a crypto-

graphic algorithm, which is precisely a single execution each time. The multi-execution scenario

serves the purpose of showing how the compilers plus the computer architecture can optimise

the performance of some cryptographic algorithms, when the algorithm is repeatedly executed.

In particular, the Elliptic Curve Digital Signature Algorithm (ECDSA) shows significant perfor-

mance increase, while the Identity Based Encryption gains are much smaller. This should be a

consequence of the heavier computations that bilinear pairings require.

We also showed how the use of C++ embedded into Java implementations of cryptographic

algorithms, through the use of the Java Native Interface (JNI), can decrease the execution times

of the Java implementations. We made tests by using C/C++ library MIRACL and the Bouncy

Castle’s ECDSA. The results are illustrative of the performance gains, and theorically the same

principle can be extended to the IBE implementation. It is also interesting to verify that even with

time lost during the type mapping between Java / JNI / C++, the end result is positive in terms of

performance gains.

The quantitative results should not be regarded as something definitive. There’s a margin of

error inherent to measuring execution times and also ECDSA uses random numbers, which can

make times differ from one execution to another. Regarding this subject, what can be seen as the

major conclusion is the fact that the use of low-level languages like C++ embedded into Java, can

be regarded as a way to increase performance of Java based cryptographic algorithms.

6.2 Further work

As future extensions to this work, it will be very interesting to embed C/C++ into the Java IBE

implementation presented in this document, like was done for Bouncy’s Castle ECDSA. The ob-

jective is to investigate if it is possible to have some performance gains by letting some of the

mathematical operations involved in bilinear pairings be done by a low-level language.
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